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ABSTRACT

Throughout the past few decades, the use of theoretical methods has become standard

practice in the chemical disciplines. This thesis addresses developments in quantum chemical

methods for studying challenging electronic structure problems. Background in quantum

chemistry and various correlated methods are presented throughout the first chapter. The

remaining chapters are described in the following.

Chapter 2 is based on an experimental collaboration studying a novel, open-shell coronoid

system. Using the spin-flip (SF) method combined with restricted active space (RAS)

configuration interaction, the ground state is predicted to be a singlet with significant

hexaradicaloid character (γ0 = 0.826, γ1 = γ2 = 0.773). It has multiple high-spin, low-lying

states (up to septet) that are found to be thermally accessible, with nearly uniform energy

gaps between consecutive multiplicities. Using the results of RAS-SF, a spin-interaction

Hamiltonian—generated to analyze the spin alignment of the molecule—finds predominantly

antiferromagnetic coupling between radical site pairs.

In Chapter 3, computational advances in the heat-bath configuration interaction (HCI)

method are presented. MPI+OpenMP are used to target improvements in speed, parallel

efficiency, and memory requirements. The implementation introduces a hash function to

distribute determinants in both the CI and perturbative spaces. These advances enable the

study of the triplet-quintet gap in the [FeO(NH3)5]
2+ molecule using a (22e,168o) active space,

which explicitly included 2.39× 107 variational determinants and 8.95× 1010 perturbative

determinants. Benchmarks show up to 86% parallel efficiency of the perturbative step on 32

nodes (4096 cores) and total efficiency of 75%. The chapter also includes benchmarks for

accuracy against prior studies.

The complete active space self-consistent field (CASSCF) method holds a central place in

conceptualizing and practicing quantum chemistry. For application to realistic molecules,

however, CASSCF must be approximated to circumvent its exponentially scaling. Applying

the many-body expansion—also known as the method of increments—to CASSCF (iCASSCF)

has been shown to produce a polynomially scaling method retaining the accuracy of the parent

theory while also being capable of treating substantially larger active spaces. However, the

orbital parameters of the original iCASSCF implementation were not variationally optimized.

xvii



Chapter 4 details the theoretical advances to iCASSCF making the method fully variational.

These advances enable the method to produce accurate nuclear gradients and optimize

stable geometries as well as transition states. Demonstrations on challenging test cases, such

as the oxoMn(salen)Cl complex with an active space of (84e,84o) and the automerization

of cyclobutadiene show the power of fully variational iCASSCF for describing challenging

molecular systems.

Finally, Chapter 5 introduces SlaterGPU, a GPU accelerated library to numerically

evaluate the Slater-type orbital (STO) integrals. The electron repulsion integrals (ERIs)

are computed under the RI approximation using the analytic Coulomb potential of the

Slater basis function. To fully realize the performance capabilities of modern GPUs, the

Slater integrals are evaluated in mixed-precision, resulting in speedups for the ERIs of over

80×. Parallelization on multiple GPUs allows for integral throughput of over 3 million

integrals per second, placing STO integration within reach of single-threadeed, conventional

Gaussian integration schemes. Benchmarks highlighting the quality and speed of the integrals

demonstrate the library’s ability to generate the full set of integrals necessary for configuration

interaction with up to 6h functions in the auxiliary basis.
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CHAPTER 1

Introduction

Chemistry is a historically empirical discipline. However, theoretical methods have become

widely used in chemical research throughout the past few decades. This thesis addresses

developments in quantum chemical methods for studying challenging electronic structure

problems. Quantum mechanics is notorious for problems which scale poorly with system size.

However, advances in computer hardware and theory have enabled routine use of theoretical

methods. These advances must balance the trade-off between accuracy and computational cost.

Background in quantum chemistry is presented throughout the current chapter. Applications

of electronic structure theory methods to an open-shell coronoid molecule are presented in

Chapter 2, which acts to showcase the capabilities of previously developed quantum chemical

methods. Computational advances in the heat-bath configuration interaction (HCI) method

are discussed in Chapter 3. Theoretical advances in the incremental complete active space

self-consistent field (iCASSCF) method are detailed in Chapter 4. Chapter 5 details the

development of a GPU accelerated library to handle the molecular integrals needed to use

Slater orbital basis sets in modern quantum chemical methods.

1.1 Overview of quantum chemistry

We will first discuss the key principles and equations used in quantum chemistry. This

will only briefly summarize concepts that are explored in greater detail elsewhere.1,2 As

the name suggests, quantum chemistry is built on top of quantum mechanics—utilizing

quantum mechanical principles to provide theoretical descriptions of the electronic structure

of molecules. As such, the term electronic structure theory is frequently used interchangeably

with quantum chemistry.

1.1.1 The Schrödinger Equation

The first postulate of quantum mechanics states that a quantum mechanical system is

completely specified by its wave function, frequently denoted ψ. From the wave function, we
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can obtain any classically observable property, O, by applying its corresponding Hermitian

operator, Ô, to the wave function

Ô |ψ⟩ = O |ψ⟩ . (1.1)

For example, the operator for the non-relativistic energy, E, of a quantum system—referred

to as the Hamiltonian operator and denoted by Ĥ—can be written for a molecule as

Ĥ = −1

2

∑
i

∇2
i−

1

2

∑
I

∇2
I+
∑
i>j

1

|ri − rj|
+
∑
I>J

ZIZJ

|RI −RJ |
−
∑
I

∑
i

ZI

|ri −RI |
, (1.2)

where ZI is the charge of nucleus I, RI is the coordinate of nucleus I, and ri is the coordinate

of electron i. The Hamiltonian contains kinetic energy contributions of the electrons and the

nuclei, and potential energy contributions from the electron-electron repulsion, nuclear-nuclear

repulsion, and nuclear-electron attraction. Substituting Equation 1.2 into Equation 1.1 yields

the Time-Independent Schrödinger Equation

Ĥ |ψ⟩ = E |ψ⟩ , (1.3)

which we will refer to simply as the Schrödinger Equation.

In most cases, the Born-Oppenheimer approximation is invoked, which allows the elec-

tronic and nuclear degrees of freedom to be treated separately. In the Born-Oppenheimer

approximation, the nuclei are treated classically due to the large difference in timescale of

nuclear motion compared to electronic motion. Essentially, as the nuclei—which are several

orders of magnitude more massive than electrons—move, the surrounding electrons are able

to fully relax their distribution around the nuclei. The electronic wave function, ψel, is then

solved in a field of nuclei at fixed positions. Thus, the new Hamiltonian of interest becomes

the electronic Hamiltonian, Ĥel, which omits terms dealing only with the nuclei:

Ĥel = −1

2

∑
i

∇2
i +
∑
i>j

1

|ri − rj|
−
∑
I

∑
i

ZI

|ri −RI |
. (1.4)

This sets up the electronic Schrödinger Equation

Ĥel |ψel⟩ = Eel |ψel⟩ , (1.5)

which is the primary equation of interest in quantum chemistry. Because this thesis deals

in electronic structure theory, we will drop the subscript and use Ĥ and ψ to refer to the

electronic Hamiltonian and wave function, respectively, throughout the remainder of the text.
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1.1.2 The Variational Principle

Closed-form analytic solutions to Equation 1.5 only exist for hydrogen-like atoms (i.e.

one electron and one nucleus). For all other systems where such solutions are unavailable, we

rely on the Variational Principle, which has the following mathematical statement

⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

≥ E0. (1.6)

In other words, the computed energy of an approximate wave function will always be an

upper bound to the ground state energy of the true ground state wave function. Thus, even

without analytic solutions, wave functions for molecular systems are solvable via optimization

of the energy functional

E[ϕ] =
⟨ϕ|Ĥ|ϕ⟩
⟨ϕ|ϕ⟩

, (1.7)

where we start with some guess wave function ϕ. Many widely used electronic structure

theory methods (including those developed in this thesis) take advantage of this principle.

1.1.3 Molecular Orbitals and Slater Determinants

To use the Variational Principle, a guess wave function must first be constructed, which

describes an initial spatial distribution of electrons. In canonical quantum chemistry, the guess

is typically a Slater determinant, which has the advantage of implicitly encoding exchange

and Pauli exclusion into the wave function. The Slater determinant is often written as

ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) · · · ϕN(r1)

ϕ1(r2) ϕ2(r2) · · · ϕN(r2)
...

...
. . .

...

ϕ1(rN) ϕ2(rN) · · · ϕN(rN)

∣∣∣∣∣∣∣∣∣∣
, (1.8)

where the ϕi are (spin) molecular orbitals (MOs) and rj are the coordinates for electron j.

Another representation of the Slater determinant is shown in Figure 1.1. Here, the MOs are

denoted by horizontal lines, and “up”- and “down”-spin electrons are represented by the up-

and down-pointing arrows, respectively. There are generally more MOs than electron pairs

leaving many MOs unoccupied, which are sometimes referred to as virtual orbitals. The MOs

themselves are composed of a linear combination of one-electron, atom-centered orbital basis

functions:

ϕp =
∑
µ

cµpχµ, (1.9)
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Figure 1.1: A schematic of the Slater determinant representation is shown.

where χµ is the atomic orbital (AO) basis function and cµp is the MO orbital coefficient.

The use of a one-electron, atom-centered basis allows the representation of electrons in

3-dimensional space to be accurately and efficiently captured using only a finite number of

functions.

The coefficients describing the MOs can be optimized using a self-consistent field (SCF)

algorithm to provide the best single Slater determinant wave function. This procedure is

called Hartree-Fock (HF) and the Slater determinant where only the most stable MOs are

occupied is referred to as the HF state. The HF procedure typically yields a wave function

that accounts for 99% of the electronic energy. However to achieve chemical accuracy, which

is generally accepted to be < 1 kcal mol−1, the remaining electronic energy must be captured.

Many post-HF methods have been developed to recover this missing energy—the so-called

“correlation” energy—from the HF wave function.

1.1.4 Basis Sets

One-electron, atom-centered basis sets—of which there are multiple choices—are the most

commonly used in quantum chemistry. The most natural choice are the Slater-type orbitals

(STOs), which are hydrogen-like orbitals of the form

S(ζ, n, l,m, r, θ, ϕ) = NSTOrn−1e−ζrZlm(θ, ϕ), (1.10)

where ζ is the exponent, n, l,m are the atomic quantum numbers, r, θ, ϕ are spherical

coordinates, NSTO is the normalization constant, and Zlm are the spherical harmonics.2–4

In many post-HF methods, construction of the Hamiltonian matrix requires computing one-
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and two-electron integrals of the form

Oµν = ⟨χµ|Ô1|χν⟩ =

∫
χµ(r)Ô1(r)χν(r)dr, (1.11)

Oµνλσ = ⟨χµ(1)χν(1)|Ô2|χλ(2)χσ(2)⟩

=

∫ ∫
χµ(r1)χν(r1)Ô2χλ(r2)χσ(r2)dr1dr2. (1.12)

However, the necessary integrals, such as the electron-repulsion integrals (Ô2 = 1
r12

), are not

known analytically for STOs. As such, they require numerical integration, which is slow and

creates a large computational bottleneck. This difficulty led to the expansion of STOs in

terms of Gaussian-type orbitals (GTOs)5

G(α, n, l,m, r, θ, ϕ) = NGTOe−αr2Slm(r, θ, ϕ), (1.13)

where Slm are the real solid harmonics.2 Figure 1.2 shows a STO approximated as a GTO.

As one can see, there are some key differences between GTOs and STOs. For one, GTOs

Figure 1.2: Contracted Gaussian functions to approximate a Slater function are shown for
ζ = 1.

clearly do not have a cusp at the nucleus. Furthermore, they decay much more rapidly than

the STO (Gaussian fast as opposed to exponentially fast). For accurate representations of

the wave function, both the nuclear cusp and exponential decay are required. These two

features strongly affect the calculation of nuclear magnetic resonance tensors6,7 and the

HOMO energy8 as well as the inverse density functional theory problem.9,10 However, GTOs

have fast analytic expressions for just about every integral of interest in quantum chemistry,
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which is the primary reason for their wide adoption. With GTOs the world is your oyster,

but it happens to not be a very good one. In this thesis, we will explore strategies for quickly

evaluating STO integrals by leveraging graphics processing units (GPUs) in Chapter 5.

1.1.5 Electron Correlation

Electron correlation is frequently divided into two kinds: the first is strong (or static)

correlation, which comes from several Slater determinants being close in energy, and the second

is weak (or dynamic) correlation, which can be thought of as coming from instantaneous

electron-electron repulsion. Strong correlation requires the wave function to be represented

with the dominant Slater determinants, i.e. those with large population, while weak correlation

requires the inclusion of as many determinants as possible. For proper treatment, one must

explicitly include multiple Slater determinants to handle strong correlation, while the recovery

of weak correlation can be dealt with using strategies such as perturbation theory.

1.2 Correlated Methods in Quantum Chemistry

The exact solution to the Schrödinger equation in a given basis can be obtained with

full configuration interaction (FCI).2 The FCI wave function represents the wave function

as a linear combination Slater determinants formed from all possible electron occupancies

in all available MOs. Figure 1.3 shows the possible Slater determinants—often referred to

Figure 1.3: All possible electron configurations for 2 electrons in 2 orbitals.

as electron configurations, or configurations for short—for a system with 2 electrons and 2

orbitals. While FCI is formally exact, the combinatorial scaling causes the problem size to

Table 1.1: Number of Slater determinants for various small molecules for FCI in the cc-pVDZ
basis.

Molecule C2 C2H4 C4H6 C6H8 C8H10

Valence electrons 8 12 22 32 42
Basis functions 28 48 86 124 162

Slater determinants 2.2× 108 8.8× 1013 2.0× 1026 5.4× 1038 1.7× 1051
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grow rapidly restricting its use to only the smallest systems. Table 1.1 shows the number of

Slater determinants required in a FCI calculation for increasingly large hydrocarbons. As

one can see, the problem size grows by ∼13 orders of magnitude for every 2 carbon and 2

hydrogen atoms added. Furthermore, the world has only recently entered the exascale era,

i.e. the fastest supercomputer (Frontier) at the time of writing is only capable of 1.6× 1018

floating point operations per second.11 This means it would take ∼ 108 seconds (> 3 years)

to finish a single row of the matrix-vector product between the Hamiltonian matrix and CI

wave function vector for the butadiene (C4H6) molecule. Consequently, many alternatives

have been formulated, which balance the trade-off between computational cost and accuracy.

The remainder of the section briefly introduces the zoo of correlated wave function methods.

1.2.1 Coupled-Cluster

We start by briefly discussing coupled-cluster (CC) methods. Coupled-cluster methods

can recover large amounts of electron correlation in reasonable wall time for small- to medium-

sized molecules. CC also benefits from size-extensivity, which means the absolute electronic

energy scales appropriately with system size. These methods have seen such success in

quantum chemical calculations to the extent that CC with singles, doubles, and perturbative

triples (CCSD(T)) is often referred to as the “gold standard” of quantum chemistry.2,12–14

But as we know, the U.S. dropped the gold standard when it ended the Bretton Woods

system in the 1970s.15 Similarly, CC methods tend to break down in systems where multiple

electron configurations are needed to accurately represent the wave function (i.e. strong

correlation), for example in bond dissociation.2,14 Consequently, coupled-cluster methods see

the most usage in computing the thermochemistry of predominantly closed-shell molecular

systems, i.e. in the weakly correlated regime.

1.2.2 Configuration Interaction Methods

Configuration interaction (CI) methods construct wave functions as linear combinations

of Slater determinants. The use of multiple Slater determinants allows CI to have more

flexibility in the placement of electron density. This is especially useful in the strongly

correlated regime—for example in a homolytic bond dissociation, a single Slater determinant

is unable to place one electron on each atom.1,2 Due to the scaling of FCI (See Table 1.1), all

CI methods used in practice only include a small subset of possible electron configurations.

Textbooks commonly introduce CI methods by their excitation level, which indicates

how many differences an electron configuration is allowed to have with a given reference

determinant. For example, CI + single excitations (CIS) starts with a reference HF wave

7



function and includes all determinants which differ by one occupied orbital from the HF

state.1,2 Truncation of the CI space in these ways results in non-size-extensive wave functions.

Additionally, the results from truncated CI calculations are highly dependent on the choice

of reference orbitals. However, many other variations of truncated CI methods exist.

One alternative is the spin-flip (SF) CI method, which utilizes a high-spin set of reference

orbitals.16–21 The singly occupied MOs of the reference result in some orbital optimization

of the first few virtual frontier orbitals and enables good descriptions of low-lying excited

states.22,23 The restricted active space (RAS) SF method is used for this purpose in Chapter 2.

Other alternatives aim to provide systematic approximations that converge to FCI with

simple parameter tuning. This includes quantum Monte Carlo (QMC) based CI methods,24–28

which randomly sample determinants from the FCI space, and select CI plus perturbation

theory (SCI+PT) methods,29–46 which are discussed in detail in Chapter 3. In SCI+PT,

electron correlation is recovered in two stages. The first stage “selects”—hence the name—the

electron configurations that are needed to describe the most significant electronic interactions,

i.e. the static correlation. This is done by iteratively selecting configurations that are

considered “important” and including them in a variational wave function, ψvar. The second

stage applies perturbation theory (PT)—typically Epstein-Nesbet (EN) PT—to recover the

remaining dynamic correlation. The EN correction is written

EEN =
∑
k

(
∑

iHkici)
2

Evar −Hkk

, (1.14)

where the index k is over determinants not in ψvar, Evar is the variational energy, ci is

the coefficient of variational determinant i, Hki is the Hamiltonian element connecting

determinants k and i, and Hkk are the diagonal elements of the CI Hamiltonian. This

equation is particularly difficult to parallelize due to the squaring of the inner sum over i,

which forces the partial sums to be stored for each k. This is further compounded by the

fact that there are, in practice, several orders of magnitude more perturbative determinants

than variational ones. These issues introduce memory bottlenecks as well as difficulties with

parallelization in the EN-PT problem. Computational strategies to address these difficulties

are the topic of Chapter 3.

1.2.3 Multi-Configurational Self-Consistent Field

As previously mentioned, the results of CI calculations are highly dependent on the choice

of reference orbitals. In multi-configurational self-consistent field (MCSCF) methods, the

wave function is constructed using multiple Slater determinants, however the orbitals are also
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variationally optimized together with the determinantal coefficients. The most commonly used

MCSCF method is the complete active space self-consistent field (CASSCF) method.2,47–52

This method performs FCI in a subset of the MO space called the active space. Outside

the active space, a HF density is used, which allows the problem of recovering electron

correlation to be localized to the most important user-defined regions. The FCI expansion

is also coupled with the orbital optimization procedure to ensure the best orbitals are used

with the CI wave function. CASSCF is most useful for capturing strong correlation where

multiple configurations are needed for a good description of the wave function, however it

does not generally provide quantitative results and is restricted to maximum active spaces of

18 electrons in 18 orbitals, denoted (18e,18o).52

Other MCSCF methods include the restricted active space SCF (RASSCF)53–57 and

generalized active space SCF (GASSCF)58,59 methods, which further partition the orbitals

into various active spaces with rules limiting the kinds of excitations allowed within and

between active spaces. These are generalizations of the CASSCF method and allow electron

correlation to be recovered in much larger overall active spaces, however the restriction on

the primary active space size from CASSCF remains.

While RAS- and GAS-based methods aim to recover additional correlation outside the

primary active space, some methods have been developed to approximate the underlying FCI

expansion within a CAS. These include density matrix renormalization group (DMRG)60–66

and localized active space self-consistent field (LASSCF).67,68 With DMRG, the reduction

in computational cost relies on some regular lattice-like structure to reduce the variational

degrees of freedom, which does not generalize well. In LASSCF, the active space is split into

localized, unentangled fragments allowing for each fragment to be treated independently. The

exponential scaling then only applies to the individual fragment subspaces rather than the

total active space of the system, however the possibility of fragments with large active spaces

remains. The idea of splitting the orbital space into smaller subspaces is similarly used in

incremental CASSCF (iCASSCF), where the subspaces are instead pairs of bonding/anti-

bonding orbitals and the many-body expansion is used to compute incremental electron

correlation corrections.69,70 The iCASSCF method has been shown to treat problems with

active spaces containing over 80 active electrons and 80 active orbitals and is the topic of

Chapter 4.

1.2.4 Incremental and Many-Body Expansion Methods

We will briefly discuss the many-body expansion (MBE), often called the method of

increments when applied to quantum chemistry. The many-body expansion—especially in

the context of FCI and CASSCF—has demonstrated very nice convergence properties toward
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obtaining FCI and CASSCF energies as well as CASSCF gradients. In general, the MBE

breaks down large problems into smaller, more manageable components and can be applied

to calculate many physical quantities. For example, the MBE expression for the electronic

energy can be written

E = Eref +
∑
i

εi +
∑
j<i

εij +
∑
k<j<i

εijk + · · · , (1.15)

where indices i, j, k refer to individual bodies. Each εx in Equation 1.15 contains the correlation

due to interactions among the bodes included in x. This approach can utilize any correlated

method, such as CC,71,72 FCI,73–82 and CASSCF.69,70 The MBE applied to FCI has had

multiple implementations, each with subtle differences. Gauss defined the bodies of the MBE

to be virtual MOs in the system,76–78,83 Windus utilized groups of occupied valence orbitals to

define individual bodies,82 and our group frequently uses valence bonding/anti-bonding pairs

from perfect pairing to define the bodies.79–81 Regardless of choice of body, each approach

computes the εx in Equation 1.15 by performing FCI within the orbitals contained in each

body of x. While these approaches all converge to the FCI solution, the approach by Gauss

requires expansion beyond 6-bodies to reach convergence.

The MBE is also fundamental to the iCASSCF method, however the previously mentioned

MBE approaches in FCI all deal with the energy. Application of the MBE to CASSCF,

on the other hand, requires some way of forming the generalized Fock matrix in order to

compute the orbital gradient.69,70 The generalized Fock matrix can be defined by the 1- and

2-particle reduced density matrices (1-RDM, 2-RDM)

Fmn =
∑
q

Dmqhnq +
∑
qrs

dmqrsgnqrs, (1.16)

where Dmn and dmqrs are the 1- and 2-RDMs, and hnq and gnqrs are the 1- and 2-electron

integrals. Using this observation, the Fock matrix is generated by computing the 1- and

2-RDMs, which are computed incrementally via

Dtot
pq = Dref

pq +
∑
i

∆Di
pq +

∑
j<i

∆Dij
pq + · · · , (1.17)

where the ∆Dx
pq terms are changes in density due to interactions between the bodies in x. The

analogous MBE for dpqrs is similar. However, this construction of the Fock matrix in this way

results in an electronic energy that is not invariant to active-active orbital rotations unlike

the parent CASSCF theory. The original formulation of iCASSCF mended this problem by

symmetrization of the active-active block of each incremental Fock matrix, which explicitly
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enforced the expected symmetry.69 However, this procedure effectively projects out some

components of the orbital gradient, which is defined by

Eo
pq = 2(Fpq − Fqp), (1.18)

thereby making the resultant iCASSCF orbital optimization not fully variational. Chapter 4

details the efforts to make iCASSCF a fully variational method.

1.2.5 Summary

The computational and theoretical advances in CI and MCSCF detailed in the following

chapters will enable accurate, FCI-quality calculations at fractions of the cost. For example,

a molecule like butadiene (C4H6)—which is beyond the reach of FCI—can be accurately

computed in just a few hours with HCI as we will show in Chapter 3. Even larger systems,

such as the oxoMn(salen)Cl molecule (containing 84 valence electrons!), can be handled in

a matter of days on a single compute node by applying the method of increments. The

advances in CI and MCSCF detailed in this thesis will be key to solving challenging electronic

structure problems and reducing the necessary trade-off between accuracy and cost.
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CHAPTER 2

An Open-Shell Coronoid with Hybrid Chichibabin-Schlenk

Conjugation

This chapter is based on a previously published experimental collaboration23 with emphasis

on the computational results and methods. In this chapter, the spin-flip (SF) method is

combined with a restricted active space (RAS) configuration interaction (CI) in order to

compute low-lying excited states of an open-shell coronoid molecule. In addition, the spin

alignment of the coronoid is analyzed using a spin Hamiltonian.

2.1 Introduction

Since their early discovery at the turn of the 20th century (1-3, Figure 2.1),84–86 open-

shell organic molecules have attracted continued interest as a testing ground for theories of

molecular bonding and electronic structure, and as an emerging class of organic materials.87–96

Polyradicals derived from π-extended aromatics play an important role in these developments,

as evidenced by their recent use as semiconductors,97 near-infrared dyes,98,99 cages,100,101

switches,102,103 and componenents for covalent self-assembly.104–109 Embedding radicaloid

centers in a circular π-conjugated array provides a way of studying the interplay between

the open-shell character and global (macrocyclic) aromaticity.96,110 The interactions between

spins are particularly enhanced in fully fused cyclic systems, that is, open-shell circulenes111

and coronoids.112–117 These systems are characterized by efficient pz-orbital overlap and

multiple conjugation pathways within their fused ring frameworks. They often combine

unusual electronic structure characteristics with appreciable chemical stability. For example,

Wu’s coronoid oligoradicals 4a,b displayed unprecedented annulene-within-annulene (AWA)

aromaticity that qualitatively depended on the size of the macrocycle.113,118 The fully

conjugated [4]chrysaorene 5, reported concurrently by Wu and co-workers114 and by our

group,115 displayed rich redox chemistry coupled with anion binding in the macrocyclic cavity.

In the open-shell coronoids studied so far, the interactions of adjacent spins were either

full equivalent, as in 4 and 5, or topologically similar.116,117 It was reasoned that it might
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Figure 2.1: Chichibabin and Schlenk conjugation in organic oligoradicaloids. Fully open-shell
configurations shown for all all oligoradicaloids. Substituents not shown for 4a,b and 5.
Unpaired electrons are presented as red dots or p orbitals.

be possible to create systems that alternate between two interaction types to produce

spins arrays with a more complex internal structure. With this goal in mind, the coronoid

system 8 was designed that combines two classic conjugation types, those found, respectively

in Chichibabin85,119 and Schlenk-Brauns86,120 hydrocarbons (2 and 3, Figure 2.1). The

Chichibabin conjugation (Kekulé-type92) is characterized by an even-electron pathway between

interacting spins, and is thus fundamentally different from the Schlenk conjugation (non-

Kekulé), which features an odd-electron path. This difference, which is reflected in the ground

states of 2 (singlet119) and 3 (triplet120), creates an unusual structural dichotomy in the

π-conjugated structure of 8.

Hydrocarbons 2 and 3, which contain only unfused benzene rings, have non-planar

structures and are consequently relatively unstable. Robustness of such diradicaloids can be
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enhanced by indene fusion,93,95 and steric protection as illustrated in indeno[2,1-b]fluorene

6121 and in [1,2-a:2’,1’-i ]phenanthrene 7,122 which feature, respectively the Schlenk- and

Chichibabin-type conjugation embedded into a fused ring framework. In 8, the radical centers

are connected via alternating 2,7-phenanthrenylene and meta-phenylene subunits, which

form a conjugation pattern that is simultaneously analagous to those found in 6 and in

diindeno[2,1-b:1’,2’-h]phenanthrene 9. The latter ring system is an isomer of 7, and likewise

features a Chichibabin-like pathway.

The six radical sites of 8′ will result in near degeneracies in the six frontier orbitals (HOMO-

2, ..., LUMO+2), which would be difficult for single Slater determinant methods to handle.

However, multiconfigurational methods such as the complete active space self-consistent field

(CASSCF) method are typically only used to treat static correlation. To accurately capture

the energetics of the ground and low-lying excited states, recovery of dynamic correlation is

also required. The restricted active space (RAS) spin-flip (SF) method,16–21 which utilizes

a high spin (in this case septet) restricted open shell Hartree-Fock (ROHF) reference, is

well-suited for handling the electronic structure of 8′. The use of a high spin reference

results in partial orbital optimization of the low-lying virtual orbitals. Furthermore, allowed

excitations outside of the primary active space recovers some dynamical correlation. However,

analytic gradients for RAS-SF do not exist, thus geometries must obtained at some other

level of theory.

The remainder of this chapter will be dedicated to the computational insights gathered

regarding 8′. Details of the synthesis and experimental characterization of 8′ can be found in

reference 23.

2.2 Computational Details

Gas-phase geometries of the four feasible spin states of the substituent-free 8′—singlet
18′, triplet 38′, quintet 58′, and septet 78′—were optimized at two levels of theory: (a) disper-

sion123 and range-corrected124 GD3BJ-CAM-B3LYP/6-31G(d,p), and (b) CASSCF(6,6)/cc-

pVDZ47,48 with the RICD approximation,125,126 denoted, respectively CAM and CAS in

subsequent discussions. CAM calculations were run using Gaussian 16127 while CAS calcu-

lations were run in OpenMolcas.128 As a single reference method, CAM is not suitable for

quantitative analysis of open-shell species, although it correctly predicts that differents spin

states of 8′ should have similar energies with preference for the singlet configuration. RAS(6,6)-

SF/cc-pVDZ16–21 energies, denoted SF, were calculated for the eight lowest electronic states

at each of the optimized CAS geometries.
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Natural orbitals (NOs) and the corresponding occupation numbers (NOONs)129 obtained

from the SF densities are used to gather additional insight into the ground and excited states

of 8′. From the SF densities, polyradicaloid indices (γi)
130 and number of unpaired electrons

(nU),131 derived from NOONs, were also computed. The spin alignments of 8′ were also

analyzed by constructing a spin Hamiltonian.

2.3 Results and Discussion

Both CAM and CAS geometry optimizations converged to fully planar geometries for all

spin states considered. At both levels of theory, the singlet and septet optimizations yielded

D3h-symmetric structures, while C2v-symmetric structures were found for the triplet and

quintet. Minor variations of C-C bond distances in 38′ and 58′ lead to reduction of point

group symmetry from D3h to C2v, apparently caused by the Jahn-Teller effect.

Table 2.1: Computational results for adiabatic spin states of 8′.

State 18′-S0
38′-T1

58′-Qn1
78′-Sp1

Point group symmetry D3h C2v C2v D3h

∆ECAM (kcal mol−1) 0.0 1.6 0.8 0.1
∆ESF (eV) 0.000 0.043 0.084 0.129

∆ESF (kcal mol−1) 0.0 1.0 1.9 3.0
nU 4.746 5.229 5.633 6.000

While CAM is not suitable for quantitative analysis of open-shell species, it correctly

predicts the various spins of 8′ should have similar energies, with preference for a singlet

configuration. At each CAS geometry, RAS-SF/cc-pVDZ energies (ESF ) were calculated at

each of the CAS optimized geometries (See Table 2.1 and Figure 2.2A) predicting the ground

state to always be a singlet (S0, S
2 = 0), followed consecutively by three triplets (T1 through

T3, S
2 = 2), two quintets (Qn1 and Qn2, S

2 = 6), one septet (Sp1, S
2 = 12) and one singlet

state (S1).

For the D3h-symmetric structures (18′ and 78′), the two lowest-energy triplet excited states

T1 and T2 where degenerate with analgous degeneracies found for the Qn1 and Qn2 quintets.

These degeneracies are indicative of spin frustration,132 and account for the Jahn-teller

distortion found for the 38′ and 58′ geometries at the CAM and CAS levels.

For each multiplicity, the lowest SF energy was identified at the corresponding CAS

geometry (S0 at 18′, T1 at 38′, etc., see Table 2.1 and Figure 2.2A) confirming the consistency

between the SF and CAS approaches. Relative SF energies of the adiabatic states 18′, 38′,
58′, and 78′ are thus 0.0, 1.0, 1.9, and 3.0 kcal mol−1, that is, the energy rises by nearly a

constant value of ∼1 kcal mol−1 for each increase in multiplicity. This is smaller than the
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SF-based estimates from ∆EST obtained for 5′ (-6.6 kcal mol−1)115 and 7′ (R=H, -1.3 kcal

mol−1).122

Figure 2.2: A) SF energies and spins for the first eight states of 8′. The lowest-energy
states for a given spin multiplicity is indicated with an arrow. The singlet geometry 18′

has a 6-fold degeneracy at 0.156 eV consisting of three singlets, two triplets, and one septet
state. B) Relationship between ∆ESF and the number of unpaired electrons nU derived from
natural orbital occupation numbers. C) Frontier natural orbitals for the 18′-S0 state (0.02
a.u. isosurface). D) SF odd-electron density for 18′ (0.002 a.u. isosurface). E) Definition of
coupling constants used in an approximate spin Hamiltonian. J values are given for the 18′

state.
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Natural orbitals (NOs) and the corresponding occupation numbers (NOONs) are shown

in (Figures A.1-A.8 in Appendix A). For all these states, amplitudes of the frontier NOs may

be approximated as linear combinations of singly occupied molecular orbitals corresponding

to the three embedded m-xylylene92 fragments. This feature, which is most evident in

the HONO and LUNO of 18′-S0 (Figure 2.2C), suggests a Schlenk-like behavior of the

unpaired electrons in the system. A similar picture is provided by the SF odd-electron density

determined for 18′-S0 (Figure 2.2D). The NOONs of 18′-S0 yielded high polyradicaloid indices

of γ0 = 0.826 and γ1 = γ2 = 0.773, confirming the open-shell character of the singlet state.

In comparison, indices based on the CAM density were γ0 = 0.984 and γ1 = γ2 = 0.559.

The polyradicaloid indices for the singlet ground state of all geometries is shown in Figure

2.3. The polyradicaloid indicies (γ0, γ1, γ2) for the S0 state of 8′ increase as the geometry of

8′ is optimized for increasing spin manifolds. Futhermore, for the D3h geometries, γ1 = γ2

while the C2v geometries have γ1 > γ2 indicating that symmetry has a strong effect on the

calculation of polyradicaloid indices. Similarly, the number of upaired electrons nU is very

Figure 2.3: Polyradicaloid indices (γi) from RAS(6,6)-SF/cc-pVDZ are shown for the ground
singlet electronic state at various optimized CASSCF(6,6)/cc-pVDZ geometries.

high for 18′-S0 (nU = 4.746, see Table 2.1). The nU values of excited states increase with
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their increasing multiplicity and are larger than the total spin (nU > 2S), except for the

septet (Sp1) configurations. In particular, the nU index differentiates excitations with the

same S. For instance, nU is 5.18 for 18′-T1 and 18′-T2, and 5.3 for 18′-T3. Interestingly, for

each CAS geometry, there is an excellent linear correlation between the SF energy, ∆SF ,

and the nU index (See Figure 2.2B). The slope of this dependence (0.124 eV/electron or 2.9

kcal mol−1/electron for 18′) provides an alternative measure of electron pairing energy that

consideres the multiconfigurational nature of all states.

The spin alignment of each ground singlet electronic wave function were analyzed to

explain the behavior of the energetics and polyradicaloid indices. This was done by analyzing

the radical sites and spin Hamiltonian (See Figure 2.4). The radical sites were identified

(labeled in Figure 2.4A,B) with the largest odd-electron density.

The analysis begins with the spin Hamiltonian for the D3h geometries, where εi = 0 for all

i. Diagonalization of the D3h spin Hamiltonian produces the following analytic expressions

for the eigenvalues:

E0 = J1 + J2 + 2J3 + J4, (2.1)

E1 = E2 = −J3 −
√
J2
1 − J1J2 − J1J4 + J2

2 − J2J4 + J2
4 , (2.2)

E3 = E4 = −J3 +
√
J2
1 − J1J2 − J1J4 + J2

2 − J2J4 + J2
4 , (2.3)

E5 = −J1 − J2 + 2J3 − J4. (2.4)

To compute J1 and J2, the spin gap error between the D3h eigenvalues and the RAS(6,6)-SF

spin states are minimized, i.e. we minimize the following equation:

R =

√∑5
i=1(E

SF
i − Ei)2

5
, (2.5)

where ESF
i corresponds to the RAS(6,6)-SF energies and the ground state eigenvalue is

assumed to be zero. Due to the difference in dimension of the spin Hamiltonian and the

RAS(6,6)-SF spin Hamiltonian, it is important to select the appropriate RAS(6,6)-SF spin

states which have the corresponding spin Hamiltonian eigenvalues. Since the non-degenerate

triplet state (T3) is higher in energy than the doubly degenerate set, it may be considered

an excited triplet, which is consistent with the higher number of unpaired electrons, nU .

Furthermore, since there are two sets of doubly degenerate eigenvalues in the spin Hamiltonian

(one corresponding to a set of triplets and the other a set of quintets), Equation 2.5 is minimized
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Figure 2.4: A) The spin Hamiltonian is shown. B) The odd-electron density (isovalue=0.005
a.u.) of the optimized 18′ geometry with the six radical sites labeled. C) The coupling
diagram corresponding to the spin Hamiltonian is drawn. For the D3h geometries, ε1 = ε2 = 0.

against the sets of doubly degenerate triplets and quintets from RAS(6,6)-SF in each D3h

geometry. The resulting couplings and RMSE are reported in Table 2.2.

Table 2.2: Computed spin couplings for 8′ (eV). Ji are computed spin coupling constants,
and εi are perturbations to spin couplings due to the C2v geometry.

Geometry J1 J2 J3 J4 ε1 ε2 ε3a ε3b ε4 RMSE
Singlet (D3h) -0.0382 -0.0302 -0.0008 -0.0097 0 0 0 0 0 1.70× 10−7

Triplet (C2v) -0.0322 -0.0262 -0.0011 -0.0081 0.0101 -0.0097 -0.0007 0.0003 0.0042 6.31× 10−9

Quintet (C2v) -0.0295 -0.0240 -0.0011 -0.0076 -0.0053 -0.0095 -0.0004 0.0004 -0.0017 1.03× 10−9

Septet (D3h) -0.0277 -0.0233 -0.0012 -0.0073 0 0 0 0 0 5.25× 10−7

One might consider the possibilities of Ji having different signs and could start the

minimization of Equation 2.5 at various points to find other minima with different signs for

Ji, however these result in RMSE several orders of magnitude higher than those reported in

Table 2.2. This suggests that the Ji should all have the same sign. In the case of all the Ji

being positive, the RMSE remains the same, however the eigenvalue −J1 − J2 + 2J3 − J4
corresponds to the septet state, which would consequently place the septet as the ground

state. Therefore, the assignment of negative sign for Ji in the D3h case gives antiferromagnetic
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coupling for the ground state. The S0 eigenvector of the D3h spin Hamiltonian has uniform

magnitudes indicating a single spin alignment.

A similar analysis can be applied to the C2v geometries, but the eigenvalue decomposition

of the spin Hamiltonian for the C2v geometries must be done numerically. For the C2v

geometries, the two triplet states lowest in energy (See Figure 2.2A) are chosen for minimizing

Equation 2.5. The C2v Hamiltonian is minimized in two separate steps. First, it is treated

with a D3h Hamiltonian to obtain the initial Ji, then Equation 2.5 is minimized to compute

the εi with fixed Ji. In other words, the C2v Hamiltonian is treated as a perturbed D3h

Hamiltonian. The resulting Ji and εi are reported in Table 2.2 along with couplings from the

D3h geometries.

Unlike the D3h case, the singlet eigenvector for each of the C2v spin Hamiltonians has

non-uniform magnitudes indicating multiple spin alignments are involved. By pairing the

spins across the vertical mirror plane (i.e. pairs 1-2, 3-6, 4-5 with ordering from Figure

2.4B,C), the overall spin system can be treated as a trimer of paired spins and the singlet

eigenvector for the two C2v spin Hamiltonians can then be decomposed as a linear combination

of multiple spin products.133 The resultant singlet wave function at the triplet and quintet

geometries are then, respectively,

ψ3 = 0.600ψ↑↓↑↓↑↓ + 0.292ψ↓↑↑↓↑↓ + 0.212ψ↑↓↓↓↑↑ + 0.095ψ↑↓↑↑↓↓, (2.6)

ψ5 = 0.607ψ↑↓↑↓↑↓ + 0.136ψ↓↑↑↓↑↓ + 0.198ψ↑↓↓↓↑↑ + 0.274ψ↑↓↑↑↓↓, (2.7)

where the radical site ordering follows that of Figure 2.4. In other words, the ground state

singlet wave functions for the C2v geometries are superpositions of multiple singlet spin

alignments in this spin Hamiltonian model. This spin interaction model suggests that all

spin pairs in 8′ are effectively antiferromagnetic in character.

2.4 Conclusions

This chapter describes the insights gathered from computational methods in the first

example of an open-shell coronoid molecule in which Kekulé and non-Kekulé conjugation

pathways are juxtaposed in a cyclic oligoradical array. Locally, this system shares features of

the Schlenk and Chichibabin hydrocarbons, to which it is structurally related, but it also

displays global characteristics resulting from macrocyclic conjugation. In particular, it has

a singlet ground state with highly multiconfigurational character as well as three high-spin

states—triplet, quintet, and septet—that have low energies and can be significantly populated

at room temperature. In addition, the spin pairs of this new coronoid are predicted to
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be predominantly antiferromagnetic at room temperature. These computational insights

complement the experimental results gathered in reference 23.
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CHAPTER 3

Advances in Parallel Heat Bath Configuration Interaction

The previous chapter showcased an application of the RAS-SF method, which can treat

static correlation in a very limited active space (up to (8e,8o)) as well as some dynamic

correlation from select excitations outside of the active space. This chapter explores the

Heat-bath configuration interaction (HCI) method, which is a deterministic method that

approaches the FCI limit at greatly reduced computational cost. In this chapter, computa-

tional improvements to the existing HCI algorithm are discussed targeting speed, parallel

efficiency, and memory requirements. This new implementation introduces a hash function to

distribute determinants and takes advantage of MPI and OpenMP for parallelism allowing for

a (22e,168o) active space to be explicitly correlated. This chapter is based on work published

previously in the Journal of Physical Chemistry A.134

3.1 Introduction

Wave function simulations provide a wealth of essential insight into diverse electronic

structures. While attaining qualitatively correct wave functions is usually possible, reaching

chemically accurate energies can be intractably difficult.2 The exact solution to the electronic

Schrödinger equation can be constructed using full configuration interaction (FCI), which

represents the wave function as a linear combination of all possible occupancies of electrons

in the full molecular orbital space. The combinatorial number limits the application of

conventional FCI to only the smallest chemical systems.

Alternatives to FCI have sought to maintain good accuracy and achieve tractable com-

putational cost. For molecules where a single electron configuration dominates the wave

function, computationally tractable, accurate alternatives exist.2 These methods—such as

coupled cluster theory—tend to break down in strongly correlated systems where multiple

configurations are required for a qualitatively correct wave function, for example in bond

dissociation.14 The complete active space (CAS)47–49 method, which performs a full CI

expansion within the set of active orbitals, performs much better when strong correlation
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is present, but is not chemically accurate in general. These limitations have led to the

development of a number of alternatives, such as quantum Monte Carlo (QMC) CI,24–28

density-matrix renormalization group (DMRG),60–66 and select CI plus perturbation theory

(SCI+PT) methods.29–39 Among the SCI+PT methods is heat-bath CI (HCI)40 and its

semi-stochastic variant (SHCI).41–46 These methods (QMC-CI, DMRG, and SCI+PT) all

share the advantages of being systematically improvable approximations to FCI with much

more bearable computational burden.

This chapter’s focus will be on HCI, though the insights herein apply equally well to all

SCI+PT methods. SCI+PT employs two simple strategies to converge and extrapolate to

the full CI energy.40,43 The first strategy is to include all electron configurations that are

needed to describe the most significant electronic interactions. This is done by (iteratively)

selecting configurations that are deemed “important” and including them in a variational

wave function that exists within a subspace of the full Hamiltonian. The second strategy is

to apply perturbation theory (PT), namely Epstein-Nesbet (EN) PT,135,136 to recover the

missing weak correlation energy. The EN correction can be written

EEN =
∑
k

(
∑

iHkici)
2

Evar −Hkk

, (3.1)

where the index k is over determinants not present in the variational wave function, Evar

is the variational energy, ci is the coefficient of variational determinant i, Hki is the Hamil-

tonian element connecting determinants i and k, and Hkk are the diagonal elements of the

Hamiltonian. This equation is nontrivial to evaluate in parallel due to squaring the inner sum

over i. The square forces the partial sums to be stored for each perturbative determinant,

and there are orders of magnitude more of these than in the variational step.

One of the first SCI+PT methods, configuration interaction by perturbatively selecting

iteratively (CIPSI),29,30 expanded the variational wave function by iteratively adding in con-

figurations that are large contributors to the perturbative energy. In CIPSI, any configuration

with a PT energy contribution above a threshold is added to the variational space. The

related adaptive sampling CI (ASCI)35,36,38 similarly uses first-order perturbation coefficients

to select electron configurations, but keeps only a fixed number to avoid growing the varia-

tional problem too large. HCI simplifies the variational search and selection criteria by only

checking Hamiltonian elements of configurations connected to the wave function, instead of

performing the full PT step.40 A similar strategy is applicable to the (expensive) PT stage

(see Theory and Implementation Details), providing an additional computational cost savings.

Regardless, the high memory costs of the PT step led to introduction of (semi-)stochastic

PT in HCI,41,42,44,46 which reduces memory burden at the cost of some sampling errors. Our
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group has made practical use of HCI as a CI solver for many-body expansions of the FCI

problem69,70,79–81 as well as a data source for inverse DFT.9,10 Here, the FCI total energy

must be converged to tight tolerances (∼10µHa), which motivated the continued development

of HCI, rather than its stochastic variants, as a workhorse for these problems.

Significant efforts have been made in the SCI+PT realm to efficiently generate the

variational wave function and compute the perturbative correction, and these inform the

present developments in HCI. In the variational step of ASCI, a ranking algorithm—originally

introduced in the context of FCI-QMC25—was used to compute the first-order perturbation

coefficients that are likely to generate important connections. Additionally, the first-order

perturbation theory contributions are partially sorted for maximum cache efficiency during

the variational stage.38 In SHCI, hash tables paired with auxiliary index arrays are used

to speed up the construction of the variational Hamiltonian.44 For the perturbative step,

ASCI uses a partial sorting algorithm that is similar to its variational stage to speed up

the calculation of the PT energy.38 In HCI, Equation 3.1 is approximated by only including

contributions to the PT energy that are larger than some threshold in the inner sum.40 In

SHCI, the stochastic PT correction substantially reduces computational cost and memory

overhead since the stochastic sampling only requires contributions from a small fraction of

the perturbative determinants.44 SHCI also uses hash tables to store the partial inner sums

to avoid the computational cost of sorting as in ASCI. To further reduce memory footprint

in SHCI, the determinants in the perturbative space are hashed allowing contributions to

the ENPT energy to be split into independent chunks, which was also proposed, although

not implemented, by Tubman et al.38 It is difficult to compare the various computational

strategies as these have been applied to different underlying algorithms. Nevertheless, these

optimizations have enabled the accurate treatment of large active spaces in reasonable wall

times.

However, even with these computational advances, all SCI+PT methods have high

computational costs when enough electrons are in play. Therefore ASCI and SHCI have

been optimized to run in parallel environments and take advantage of modern computational

resources. In ASCI and SHCI, Hamiltonian construction is parallel across rows. ASCI

also uses freely available parallel sorting libraries in its implementation.38 In SHCI, the

partial sums of Equation 3.1 are stored in lock-free hash tables to minimize communication

overhead.44 These parallel advances have allowed SHCI to treat wave functions with more

than 109 variational determinants and its associated perturbative correction.

This work presents a reconceived implementation of deterministic HCI, which combines

new algorithmic strategies inspired by those discussed by Li et al. and Tubman et al. The

largest calculation showcases the [FeO(NH3)5]
2+ complex with an active space of (22e,168o).
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This allowed HCI to explicitly treat 2.39 × 107 variational determinants and 8.95 × 1010

perturbative determinants. This calculation is the first attempt to treat a transition metal

complex with an active space of this size using SCI+PT.

The organization of this chapter is as follows. In the Theory and Implementation Details,

the HCI algorithm is briefly reviewed, followed by a discussion of key data structures and

parallelization considerations. The Results and Discussion section presents parallel scaling

and accuracy benchmarks, examines cyclobutadiene automerization, and computes the

quintet-triplet spin gap of [FeO(NH3)5]
2+.

3.2 Theory and Implementation Details

The HCI algorithm in this work was implemented in a development version of QChem in

C++ with MPI for multi-node parallelization and OpenMP for thread-level parallelization.

HCI has been thoroughly described in previous works,40–46 thus we only briefly summarize

the algorithm in this section before continuing to detail the computational implementation.

Like other SCI+PT methods, HCI consists of two steps: generation of a variational wave

function and the computation of the perturbative energy correction. For HCI, two parameters

(denoted ε1 and ε2) are used to tune accuracy.

3.2.1 The Variational Step

Figure 3.1: Heatmaps of the CI Hamiltonian at each iteration in the variational step of a
HCI calculation are shown. The submatrices of prior HCI iterations are boxed in green, red,
and black for the first, second, and third iterations, respectively. Darker colored cells indicate
larger magnitude Hamiltonian elements.

In the variational step, a guess wave function is first generated, which can be a single Slater

determinant or a small CI expansion. At each variational iteration of HCI, new determinants
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are added using the heat-bath selection criteria,

max(|Hkici|) > ε1, (3.2)

where the index i runs over determinants in the variational wave function and ci denotes

the coefficients of the variational CI vector. In other words, a determinant is added if

it is connected to a determinant in the current wave function by a significant coupling,

weighted by the variational CI coefficient. The variational stage ends when the number of

new determinants in a step is less than 1% of the number of determinants in the current wave

function, although other termination criteria can be used.43 The variational HCI iteration

can be reduced to three primary steps:

1. Find all determinants not in the wave function where |Hkici| > ε1 for at least one

determinant in the wave function,

2. Add these determinants to the wave function,

3. Augment the Hamiltonian and compute the new wave function,

until the termination criteria are satisfied (see Computational Details). Figure 3.1 shows a

heatmap demonstrating how the Hamiltonian is augmented with every HCI iteration.

3.2.2 The Perturbative Step

Figure 3.2: The heatmap shows the variational Hamiltonian (left) from Figure 3.1 as well
as the terms Hkici for the perturbative determinants (right). On the left, each column
represents a determinant in the variational space, while each column on the right represents
a perturbative determinant. The inner sum in Equation 3.1 runs over columns in this figure.
Darker colors indicate larger magnitudes.

In HCI, the perturbative step uses a modification of EN PT to recover the remaining

correlation energy outside of the variational space. This energy is closely related to Equation
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3.1, but only includes terms larger than some threshold, ε2, in the inner sum,40

EEN ≈
∑
k

(∑|Hkici|>ε2
i Hkici

)2
Evar −Hkk

. (3.3)

Naturally, ε2 is orders of magnitude smaller than ε1. Figure 3.2 shows a heatmap of the

perturbative terms, Hkici. Strategies to mitigate the computational challenge of enumerating

over and storing contributions to Equation 3.3—where the memory requirement grows quickly

with system size—are discussed in the remainder of this section.

3.2.3 Data Structures

The key data structures in this implementation are described for the variational and

perturbative steps. The selection and design of these data structures take into account

discussions by Tubman et al. regarding ASCI38 and borrows ideas from prior work on SHCI

by Li et al.; the differences will be noted.

The determinants are stored as bit strings using what Tubman et al. call the standard

representation. In HCI, the α and β bit strings are stored separately within a C++ struct.

This struct also contains a 32-bit integer denoting the index of the determinant in the

Hamiltonian and coefficient vector. Li et al. likewise use bit-strings to represent determinants,

though they stored the bit-strings as dynamic arrays of unsigned 64-bit integers to allow the

orbital count to be assigned at run-time. The present implementation represents the bit-strings

using std::bitset from the C++ standard template library (STL). While std:bitset has

the downside of having a fixed length (and therefore fixed maximum number of orbitals)

at compile time, a reasonable choice is unlikely to introduce memory or computational

bottlenecks for small calculations, and the larger calculations are the main concern here.

Furthermore, statically sized data structures can benefit from several compiler optimizations,

especially when passed into a hash function, which is one of the most numerous operations in

this article’s HCI implementation.

Similarly to Li et al.’s work, the Hamiltonian is stored in sparse format. Each node keeps

its own local copy of the diagonal of the Hamiltonian. Since the Hamiltonian is symmetric,

only the non-zero, upper triangular elements of the Hamiltonian are stored. For parallel

memory balancing, each node stores Hamiltonian rows corresponding to determinants which

have hashes falling within its assigned ranges. To do this, a modified version of the FNV

hash function137 is utilized (see Appendix B).

The use of hash tables to store the partial sums as well as partitioning the perturbative

space into hash ranges are likewise borrowed from Li et al.44 The hash table implementation
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used in our work is the Parallel Hashmap.138 In the prior SHCI algorithm, each node is

required to store a hash table of partial sums for each of the other nodes, which necessitates

an expensive merge of hash tables. With p hash tables per node, where p is the number of

nodes, there is a possibility of multiple threads attempting to update the same hash table

at the same time. To avoid these collisions, Li et al. utilize thread-local tables that are

periodically merged with the process-level tables. While this improves parallel performance,

it also introduces code complexity. In the present article’s implementation, this is avoided by

making the problem embarassingly parallel and avoiding merge altogether. Furthermore, the

use of hash tables allows the variational Hamiltonian to be cleared from memory prior to

beginning the perturbative step, resulting in a large memory savings. This will be discussed

in the next section along with the parallelization details.

3.2.4 Parallelism and Algorithmic Optimization

MPI+OpenMP are used to parallelize this HCI implementation, and the key points for

parallelization are detailed in this section. To facilitate discussion of the implementation,

Table 3.1 lists the notation used to describe various data structures.

The variational step begins with an initial CAS wave function up to (8e,8o) in size. The

Hamiltonian for the guess is stored in dense format and diagonalized exactly, which is done

separately on each MPI process. With at most 4900 determinants for an active space of

(8e,8o), the guess is inexpensive. Once the guess wave function is generated, the initial

Hamiltonian is cleared from memory.

To find connected determinants, iterations over each determinant in the variational wave

function generate and screen new determinants according to Equation 3.2. In this step,

the determinants are statically distributed across MPI ranks in a round-robin fashion and

dynamically load balanced within each MPI process across OpenMP threads. Each thread

tracks its own set of new determinants, which are subsequently merged and sorted (removing

duplicates) within each MPI processes. A call to MPI Allgatherv then communicates all

determinant lists between MPI ranks. Each MPI rank then once again sorts and removes

duplicates from its own list. The new determinants are then merged into the wave function.

At this point, each MPI rank has the same set of determinants that have the same indexing

across processes. Algorithm 3.1 shows pseudocode demonstrating the load balancing and

communication for adding new determinants as well as key algorithms used from the C++

STL. Notably, the loop over {d}var in Algorithm 3.1 only needs to occur over the new

determinants from the previous HCI iteration.
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Table 3.1: The notation for various data structures and their descriptions are listed below.

Notation Description

{d}var The set of variational determinants

d An arbitrary determinant.

di An arbitrary determinant with index i.

h Hash function. Takes in an α- or a β-

string.

H(di, dj) Hamiltonian element between determi-

nants di, dj.

c(d) CI coefficient for determinant d.

R 2D hash range. Rα and Rβ will denote the

range for α- and β-strings, respectively.

α, β Arbitrary α- and β-string, respectively
dα, dβ α-string and β-string of determinant, d,

respectively.

αa
i , βa

i Singly excited α-string and β-string, re-

spectively.

αab
ij , βab

ij Doubly excited α-string and β-string, re-

spectively.

Sd Set of singly excited determinants con-

nected to d.

Dd Set of doubly excited determinants con-

nected to d.

Sd
α, Sd

β Set of singly excited α-strings and singly

excited β-strings for determinant d, respec-

tively.

Dd
α, Dd

β Set of doubly excited α-strings and dou-

bly excited β-strings for determinant d,

respectively.

dai Determinant d with α excitation from i→
a.

db̄j̄ Determinant d with β excitation from j →
b

M Hash table.
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Algorithm 3.1 Pseudocode for adding new determinants in the variational step

1: newdets = new vector<determinant>[nomp]

2: #pragma omp parallel for schedule(dynamic)

3: for di in {d}var ▷ stride = MPI size
4: for dk in Sdi , Ddi

5: if |H(dk, di)c(i)| > ε1
6: newdets[n].push back(dk)
7: merge(newdets)

8: sort(newdets)

9: unique(newdets)

10: MPI Allgatherv(newdets)

11: sort(newdets)

12: unique(newdets)

13: merge(dets,newdets)

As previously mentioned, determinants are stored as pairs of α- and β-strings. This allows

for hashing the α- and β-strings separately to produce a 2D hash, which in turn facilitates

load balancing in the variational and perturbative steps. Figure 3.3 shows how a determinant

gets assigned to a MPI rank based on the 2D hash for an example with nine MPI processes.

During the variational step, the Hamiltonian rows are assigned to MPI ranks using the

2D hash ranges described above. The Hamiltonian is then constructed by distributing rows

across threads using dynamic scheduling within MPI processes. The subsequent matrix

multiplication to form σ in the Davidson algorithm139,140 works across the same row division.

Within a MPI process and during the sparse matrix-vector multiplication, each OpenMP

thread stores its own σ to prevent collisions and to allow lock-free operations. These thread-

local σ vectors are then merged and collected to the head MPI process which handles the

(trivial) Davidson subspace diagonalization.

Like in the variational step, the determinants in the perturbative step are hashed over

their α and β strings into a 2D hash, which is similarly distributed among MPI ranks based

on predetermined α- and β-hash ranges. The 2D hash allows the PT step to be made

embarrassingly parallel, as the PT determinants are predistributed by the hash across MPI

ranks. Within each MPI rank, the 2D hash is further divided among the threads. Each

thread then only needs to store the partial sums for determinants that lie in its assigned

hash range. These smaller ranges are dynamically scheduled, which effectively distributes the

outer sum of Equation 3.3 among the threads. Furthermore, partitioning of the perturbative

step has the added advantage of allowing the perturbative space to be split into smaller bins

as necessary to reduce the memory overhead for large calculations. The decomposition of the

perturbative space into hash ranges is also used in SHCI,44 however in SHCI, the perturbative
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Figure 3.3: This schematic shows an example of how an arbitrary determinant, dk, is
assigned to a MPI rank. In this example, there are 9 MPI ranks involved in the calculation.
The determinant is hashed by its α- and β-strings separately and then assigned based on
predetermined ranges or bins for both the α and β hashes.

step is parallel within a hash range, i.e. all processes and threads work on the same hash

range simultaneously before proceeding to the next.

Algorithm 3.2 Pseudocode for perturbative single excitations for a single OpenMP thread
operating on hash range, R.

1: for d in {d}var
2: Sα = {αa

i : αa
i ∈ Sd

α and h(αa
i ) ∈ Rα} ▷ cached for d with same α

3: if h(dβ) in Rβ

4: for αa
i in Sα

5: if |H(dai , d)c(d)| > ε2
6: M(dai )+=H(dai , d)
7: if h(dα) in Rα

8: Sβ = {βj
i : βj

i ∈ Sd
β and h(βa

i ) ∈ Rβ}
9: for βa

i in Rβ

10: if
∣∣H(dāī , d)c(d)

∣∣ > ε2
11: M(dāī )+=H(dāī , d)c(d)

Algorithm 3.2 details pseudocode for a single OpenMP thread computing the perturbative

partial sums due to singles excitations. The array Sα is only generated once per α string.

This is possible since the variational determinant list is sorted in blocks allowing Sα to be

kept until the α string changes in the outer loop of Algorithm 3.2. This lowers the number of

times perturbative determinants must be generated. A similar algorithm is used for the α,α

31



and β,β doubles. Algorithm 3.3 shows pseudocode for generating the mixed α/β perturbative

doubles, which can utilize a similar caching strategy for Sα as in Algorithm 3.2.

Algorithm 3.3 Pseudocode of the perturbative step for mixed α/β double excitations for a
single OpenMP thread operating on hash range, R.

1: for d in {d}var
2: Sα = {αa

i : αa
i ∈ Sd

α and h(αa
i ) ∈ Rα} ▷ cached for d with same α

3: Sβ = {βj
i : βj

i ∈ Sd
β and h(βa

i ) ∈ Rβ}
4: for αa

i in Sα

5: for βa
i in Sβ

6: if
∣∣∣H(dab̄ij̄ , d)c(d)

∣∣∣ > ε2

7: M(dab̄ij̄ )+=H(dab̄ij̄ , d)c(d)

Vital to the speed and accuracy of these PT strategies, these algorithms do not need

to check if the generated determinant is already in the variational space. Instead, after a

thread has gone through Algorithm 3.2, the analogous algorithms for α,α and β,β doubles,

and Algorithm 3.3, a single-index loop over the variational determinants zeroes all variational

partial sums, as shown in Algorithm 3.4. This is another advantage of hash tables, as the

operation to find and zero the partial sum of variational determinant, d, can be done in O(1)

time. This is key to allowing HCI to free memory from the variational Hamiltonian before

starting the perturbative stage, where memory storage is limiting.

Algorithm 3.4 Pseudocode of a single OpenMP thread for removing perturbative contribu-
tions from determinants in the variational space.

1: for d in {d}var
2: M(d) = 0

This decomposition is key to removing the memory bottleneck in HCI without relying

on semi-stochastic sampling. Furthermore, since each inner sum in Equation 3.3 is only

computed by a single thread, no synchronization is needed until all hash ranges have been

exhausted. At the end of the perturbative step, each MPI rank only needs to send its local

correction for the final communication. This approach to the perturbative step of HCI limits

the need for synchronization and network data transfers. Table 3.2 summarizes the key data

structures and algorithmic advances.
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Table 3.2: Key data structures and parallel implementation details.

Implementation Computational Benefit

α- and β-strings stored

as std::bitset

Facilitates 2D hash and allows compile-time optimiza-

tions of hash functions.

2D Hash Allows the variational stage to be divided into evenly-

sized chunks, facilitating load balancing. In the per-

turbative space, it also overcomes memory bottlenecks

by allowing the space to be split into arbitrarily small

chunks.

Hash Table Allows for fast access of intermediate partial sums in the

perturbative step. Also allows variational Hamiltonian

to be cleared prior to the perturbative step.

3.3 Computational Details

The variational step of HCI is considered complete when the number of new determinants

added via Equation 2 is less than 1% of the number in the current wave function. Throughout

this study, a CAS-CI wave function (8 electrons in 8 orbtals or smaller) is used as the initial

guess. Additionally, the threshold for singles excitations is set to ε1/5, with ε1 being the

cutoff for doubles excitations. The RI approximation is used for 2-electron integrals, using

the RIMP2-cc-pVDZ and RIMP2-cc-pVTZ auxiliary basis sets141, as appropriate.

Parallel scaling benchmarks were computed for trans-butadiene (See Appendix B for

geometry) using up to 32 nodes on the Perlmutter Supercomputer at the National Energy

Research Scientific Computing Center. Each run was launched with one MPI process per

node and 128 OpenMP threads per process. The cc-pVDZ142 basis set was used with ε1 of

1 × 10−4 Ha and ε2 of 1 × 10−7 Ha. The full set of valence orbitals and the entire virtual

space were correlated in these computations (22e,82o) using canonical RHF orbitals. The

HCI space is composed of 3.2 × 106 variational determinants and 2.7 × 1010 perturbative

determinants, selected from the FCI space of 2.0× 1026 possible determinants.

To test for accuracy, the FCI energy of butadiene was computed using a linear extrapolation

as done in prior heat-bath studies.40–43 Thresholds for ε1 of 2.5× 10−4, 2.0× 10−4, 1.5× 10−4,

1.0 × 10−4 and 5.0 × 10−5 Ha were used with ε2 = 1.0 × 10−8 Ha for all ε1’s. To properly

compare to prior benchmarks, the geometry for the accuracy test was taken from Daday et

al.143 The ANO-L-VDZP basis was used along with natural orbitals (NOs) taken from the
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HCI variational density at ε1 = 1.0× 10−4. Since there is no RI basis optimized for ANO

basis sets, the RIMP2-aug-cc-pVTZ141 auxiliary basis was used for this benchmark.

The accuracy of the new HCI implementation is also tested against diatomic benchmarks

from prior SHCI studies.41 Specifically, the energies of C2, N2, O2, and F2 are computed with

the cc-pVTZ142 basis set. The HCI thresholds were set to ε1 = 1× 10−4 Ha and ε2 = 1× 10−8

Ha. RHF (ROHF for O2) reference orbitals are used for a more direct comparison to the

prior SHCI benchmark.

The singlet and triplet gaps in the cyclobutadiene automerization reaction were also

studied with HCI. D2h and D4h geometries for cyclobutadiene were taken from a prior coupled-

cluster study.144 The HCI calculations included all valence electrons and were performed with

the cc-pVTZ basis set resulting in a FCI space of (20e,172o).

The triplet and quintet states of the [FeO(NH3)5]
2+ complex were computed using geome-

tries from previous studies.145–148 The cc-pVTZ basis set was used for Fe and O, the cc-pVDZ

basis set for N, and the 6-31G149–151 basis set for H. Polarization functions on H contribute

45 orbitals at the double-zeta level, and these were removed to keep the HCI calculation

computationally tractable. ROHF orbitals were first obtained, followed by Pipek-Mezey

localization of the valence space. The resultant local orbitals included in the active space

are the Fe d-orbitals, O valence orbitals, and N lone-pair orbitals which donate to Fe (See

Appendix B for localized orbitals). The remaining valence orbitals consist of N-H σ orbitals

which are inactive. The resultant active space is (22e,168o).

For cyclobutadiene and [FeO(NH3)5]
2+, HCI extrapolation to the FCI limit was performed

with ε1 values of 2.5 × 10−4, 2.0 × 10−4, 1.5 × 10−4, and 1.0 × 10−4 Ha. The perturbative

step for the FCI extrapolation was computed with ε2 of 1 × 10−7 Ha for all ε1’s. Prior

to performing HCI calculations for FCI extrapolation, natural orbitals for the states of

interest were obtained using the density from the variational step of a HCI calculation with

ε1 = 1× 10−4 Ha.

3.4 Results and Discussion

This section presents benchmarks of parallel scaling and accuracy, then demonstrates the

new implementation’s capabilities on strongly correlated systems.

Parallel scaling tests were run on butadiene as detailed in the Computational Details.

The resultant total wall time on a single node was 5.5 hours. A total of 3.2× 106 variational

determinants and 2.7 × 1010 perturbative determinants were explicitly correlated in this

calculation. Figure 3.4 shows the wall times and speedups for HCI variational and perturbative

steps on up to 32 nodes. The variational step drops to ∼ 37% parallel efficiency at 8 nodes,
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Figure 3.4: Wall times (left) and speedups (right) for a HCI calculation of butadiene on up
to 32 nodes are shown. Perfect speedup is shown as a solid black line. The HCI calculation
included all valence electrons in the cc-pVDZ basis set with thresholds set to ε1 = 1× 10−4

and ε2 = 1× 10−7.

but the total scaling (including variational and perturbative steps) at 32 nodes remains above

74% at 23x speedup. This is due to the excellent scaling of the perturbative step, which is

the more computationally intensive one and stays above 86% efficiency on 32 nodes. The

current implementation is highly parallel allowing systematic approximations to FCI to be

achieved with reasonable wall times.

Due to the orbitals, basis, and geometry chosen, the energy from the scaling benchmark

is not directly comparable to prior energy benchmarks. Instead FCI extrapolation in the

ANO-L-VDZP basis using the geometry from Daday et al.143 is used to obtain an accuracy

benchmark. A 5-point extrapolation results in a total energy of −155.55739 Ha which is only

3× 10−4 Ha from a prior DMRG benchmark152 of −155.55718 Ha (See Appendix B for more

detail).

Table 3.3: Diatomic energy benchmarks of HCI computed in the cc-pVTZ basis. The
perturbative cutoff is ε2 = 10−8 Ha for HCI and SHCI.

Molecule Method S2 ε1 Energy (var) Energy (total)
C2

SHCI41

0.000 3× 10−4 -75.7738 -75.78463
N2 0.000 3× 10−4 -109.3608 -109.37486
O2 2.000 3× 10−4 -150.1130 -150.13078
F2

∗ 0.000 5× 10−4 -199.2787 -199.29727
C2

HCI

0.000 1× 10−4 -75.7803 -75.78493
N2 0.000 1× 10−4 -109.3689 -109.37524
O2 2.000 1× 10−4 -150.1221 -150.13062
F2 0.000 1× 10−4 -199.2854 -199.29715

∗MP2 NOs were used. RHF/ROHF orbitals used for all others.
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To additionally check HCI for accuracy, Table 3.3 shows the computed HCI and SHCI41

energies for C2, N2, O2, and F2 in the cc-pVTZ basis set. The total energies for all benchmarks

differ by less than 0.3 mHa. Differences in the energies arise due to the use of RI for the two

electron integrals as well as the use of deterministic versus stochastic perturbation theory.

Figure 3.5: Automerization of cyclobutadiene (top) is shown with relative full CI energies in
kcal mol−1 plotted (below). Full CI energies were computed using a 4-point extrapolation
from HCI calculations (See Table 3.4).

Figure 3.6: Linear extrapolation of 1D2h, 3D2h, 1D4h, and 3D4h cyclobutadiene energies to the
full CI limit. Extrapolated energies and R2 values are provided in the legend. HCI energies
were computed in the cc-pVTZ basis with a (20e,172o) active space and ε1 values of 0.10
mHa, 0.15 mHa, 0.20 mHa, and 0.25 mHa. The perturbative cutoff, ε2 was set to 10−7 Ha
for all cyclobutadiene calculations.

To further test the capabilities of the new HCI implementation, HCI is applied to the

automerization of cyclobutadiene,70,144,153–161 a well-known strongly correlated system. The
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reaction begins and ends at a D2h geometry, and proceeds through a D4h transition state

that has a low-lying triplet electronic state. Figure 3.5 shows the automerization reaction

(top) with computed barrier and spin gaps (bottom). The strong correlation stems from the

near degeneracy of the HOMO and LUMO, which gives cyclobutadiene a biradical electronic

structure.

Table 3.4: HCI energies for cyclobutadiene automerization. All calculations are done in the
cc-pVTZ basis set with ε2 = 1× 10−7 Ha. Linear extrapolations using the tightest n ε1 values
are shown for each state.

State S2 ε1 (mHa) Nvar NPT Evar Etotal

1D2h 0.000

0.25 1,681,015 3.6× 1010 -154.291913 -154.382519
0.20 2,402,347 4.2× 1010 -154.299285 -154.383326
0.15 3,915,304 5.2× 1010 -154.307161 -154.384214
0.10 8,261,698 6.7× 1010 -154.320075 -154.385807

extrapolation 4 points -154.394473
extrapolation 3 points -154.394734

3D2h 2.000

0.25 1,925,018 4.0× 1010 -154.242656 -154.328342
0.20 2,608,106 4.6× 1010 -154.246864 -154.328736
0.15 4,048,046 5.4× 1010 -154.252969 -154.329419
0.10 8,374,320 7.0× 1010 -154.262967 -154.330764

extrapolation 4 points -154.339966
extrapolation 3 points -154.340583

1D4h 0.000

0.25 1,735,690 3.6× 1010 -154.270659 -154.367513
0.20 2,379,890 4.1× 1010 -154.279442 -154.368444
0.15 3,703,206 4.9× 1010 -154.287426 -154.369361
0.10 7,692,782 6.5× 1010 -154.300110 -154.370827

extrapolation 4 points -154.379803
extrapolation 3 points -154.380042

3D4h 2.000

0.25 1,796,992 3.5× 1010 -154.276501 -154.362263
0.20 2,464,584 4.0× 1010 -154.281035 -154.362738
0.15 3,913,936 5.0× 1010 -154.287727 -154.363521
0.10 8,312,068 6.6× 1010 -154.298450 -154.364918

extrapolation 4 points -154.374077
extrapolation 3 points -154.374454

4-point energy extrapolations for cyclobutadiene are shown in Figure 3.6. The FCI

extrapolation leads to an activation barrier for automerization on the singlet state of 9.21 kcal

mol−1, a singlet-triplet gap of 34.20 kcal mol−1 at the D2h geometry, and a singlet-triplet gap

of 3.59 kcal mol−1 at the D4h geometry. Error estimates of the total energies can be made

by comparing 4-point to 3-point extrapolation (see Table 3.4), which results in less than 1

mHa energy differences for each state and geometry. Using the two extrapolation schemes,
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Table 3.5: Relative energies of cyclobutadiene computed using different methods. Energies
are in kcal mol−1.

Method basis ∆E(1D4h − 1D2h) ∆E(3D4h − 1D4h) ∆E(3D2h − 1D2h)
FCI 4-point

cc-pVTZ 9.21 3.59 34.20
extrapolation
FCI 3-point

cc-pVTZ 9.22 3.51 33.98
extrapolation
CCSDTQ144 aug-cc-pVTZ 8.93 3.32 33.05

the relative energies change only slightly, with the largest change being 0.22 kcal mol−1 (See

Table 3.5). Prior studies computed the ”theoretical best estimate” for the singlet-triplet gaps

of the D2h and D4h geometries and singlet barrier at the CCSDTQ/aug-cc-pVTZ level of

theory.144 These quantities are shown in Table 3.5 alongside the CI extrapolation energies.

Some discrepancy arises from the difference in basis, though the largest relative energy

difference is relatively small at 1.15 kcal mol−1.

The [FeO(NH3)5]
2+ test case represents a challenging test for correlated electronic structure

theories, as it contains a large number of electrons in close spatial proximity and two spin states

that are close in energy. This complex has been studied with methods such as coupled-cluster

and CASPT2.145–148 Feldt et al. applied CCSD(T) with reference orbitals from UHF, ROHF,

UKS, ROKS, and CASSCF methods, which led to several different signs and magnitudes of the

triplet-quintet spin gap.145 In addition, Feldt et al. used DMRG-CASPT2 to compute valence

Table 3.6: Quintet energy relative to the triplet energy of [FeO(NH3)5]
2+ at various levels of

theory. Energies are in kcal mol−1.

Method Relative Quintet Energy
UKS-UCCSD(T)145 0.6

ROKS-UCCSD(T)145 1.2
ROKS-RCCSD(T)145 2.5

CASSCF(12,12)-UCCSD(T)145 -0.5
CASPT2/CC145 -0.5

DLPNO-CCSD(T0)
148 -5.0

DLPNO-CCSD(T1)
148 -5.4

CASPT2/CC148 0.4
HCI (this work) -6.0

correlation and UKS-CCSD(T) to compute the semicore correlation (denoted CASPT2/CC),

however, they noted the lack of a high quality benchmark left the energetics of [FeO(NH3)5]
2+

an open question. Recent work by Drosou et al. used DLPNO-CCSD(T) and CASPT2/CC

with similarly varying results.148 Table 3.6 summarizes prior spin gaps, showing values from
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Figure 3.7: The 4-point FCI extrapolation of [FeO(NH3)5]
2+ with (22e,168o) is shown. All

perturbative energies are computed with ε2 = 1× 10−7 Ha. The FCI extrapolated energy
and R2 are provided in the legend. Variational thresholds for ε1 and the basis set are listed
in the Computational Details.

-5.4 kcal mol−1 to 2.5 kcal mol−1. The different predictions for the sign and magnitude of the

spin gap demonstrate the challenging electronic structure of this complex.

While including all valence electrons and Fe semicore (3s, 3p) electrons is likely necessary

to accurately refine the T-Q spin gap, such an active space (60e,187o) is still out of reach for

HCI. The current active space considered reflects the most important valence contributions

that are feasible in a reasonable wall time. An expanded HCI space including at least the Fe

semicore orbitals may be visited in a future study.

A 4-point full CI extrapolation for the triplet and quintet states is shown in Figure 3.7.

The most expensive calculation was the quintet with ε1 = 1 × 10−4 Ha. The variational

stage for this calculation took 1.75 hours on 16 nodes while the perturbative step took

approximately 9.5 hours on 36 nodes. This extrapolation results in the quintet state being

5.98 kcal mol−1 lower than the triplet state. Similarly to the cyclobutadiene calculation, an

estimate of the error is computed by conducting a a 3-point extrapolation, which slights

lowers the gap to 5.77 kcal mol−1. In the 4- and 3-point extrapolations, R2 for the fits remain

above 0.9999. This suggests the spin gap for this active space is reliable, even though the

active space itself is likely too small for quantitative accuracy.

Natural orbitals were computed using densities from the variational wave functions with

ε1 = 0.1 mHa. Figure 3.8 shows NOs for the triplet state and Figure 3.9 for the quintet. The

singly-occupied orbitals for the triplet are the Fe=O π∗
xz and π∗

yz orbitals. These are also

singly occupied in the quintet, along with the dxy and dx2−y2 orbitals. These occupations
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Table 3.7: HCI energies for the [FeO(NH3)5]
2+ triplet and quintet states. Basis set is described

in Computational Details. In the perturbative step, ε2 = 1 × 10−7 Ha for all calculations.
Linear extrapolation is used with the n smallest ε1 values.

State S2 ε1 (mHa) Nvar NPT Evar Etotal

triplet 2.000

0.25 4,574,604 5.7× 1010 -1618.357028 -1618.415337
0.20 6,383,114 6.3× 1010 -1618.361823 -1618.415781
0.15 9,917,081 7.0× 1010 -1618.367631 -1618.416375
0.10 18,900,066 8.0× 1010 -1618.375265 -1618.417225

extrapolation 4 points -1618.422056
extrapolation 3 points -1618.422275

quintet 6.000

0.25 6,215,652 6.76× 1010 -1618.364232 -1618.423656
0.20 8,611,136 7.28× 1010 -1618.369339 -1618.424287
0.15 13,120,044 7.97× 1010 -1618.375351 -1618.424992
0.10 23,907,184 8.95× 1010 -1618.383049 -1618.425872

extrapolation 4 points -1618.431591
extrapolation 3 points -1618.431471

are consistent with Feldt et al.’s investigation using DMRG-CASPT2.145 This consistency

indicates that the same qualitative states are being targeted between the studies, though

HCI places the high spin quintet much lower than the triplet compared to coupled-cluster

methods.145,148

Figure 3.8: NOs for the triplet state computed using the variational density from HCI with
ε1 = 0.1 mHa are shown with isosurface values of 0.8 a.u. NO occupations are listed below
each orbital.

From Figures 3.8 and 3.9, it can be seen that the quintet NOs have substantially less

mixing between the Fe dx2−y2 orbitals and N lone-pair orbitals relative to the triplet NOs,

which indicates that the triplet state has more electron correlation stemming from interactions

between the equatorial NH3 lone pairs and the Fe d orbitals in the xy-plane. This suggests
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Figure 3.9: NOs for the quintet state computed using the variational density from HCI with
ε1 = 0.1 mHa are shown with an isosurface values of 0.8 a.u. NO occupations are listed below
each orbital.

that more correlation energy will be recovered from the triplet state than the quintet state if

the N-H σ-bonds were included in the CI space. While these were excluded from this study

due to high computational cost (resulting in an additional 30 electrons and 15 orbitals),

their contribution is likely to lower the magnitude of the current spin gap, and possibly even

reverse its sign.

3.5 Conclusions

Advances in the HCI method are demonstrated in a new highly parallel code. The most

expensive step—the perturbative energy—exceeds 80% parallel efficiency on 32 nodes (4096

cores) on the Perlmutter Supercomputer. This strategy allowed fast evaluation of an active

space size of (22e,168o), which explicitly includes 23 million variational determinants and 89

billion perturbative determinants.

Methods that approximate the FCI energy are especially useful for approaching strongly

correlated problems. Therefore high quality activation barriers and gaps are computed for

the cyclobutadiene automerization, which are consistent with prior CCSDTQ144 calculations.

Additionally, FCI extrapolations are obtained to compute the electron correlation from the

Fe=O valence space along with N lone-pairs in [FeO(NH3)5]
2+. The triplet-quintet gap,

however, is still unresolved due to the lack of correlation from N-H sigma bonds and iron

semicore orbitals, which are each known to be important for this complex. These may be

resolved using incremental FCI,39,69,70,79–81 which relies on the HCI algorithm to solve its

individual CI energies.
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The calculations presented in this work demonstrate the HCI implementation is highly

scalable and can provide high-quality energy benchmarks. The 2D hash function combined

with a new parallel implementation was particularly instrumental in overcoming the otherwise

high memory requirements of HCI. Further development and optimization is expected to

improve the performance and scalability of HCI, which will additionally facilitate deeper

study of strongly correlated complexes such as [FeO(NH3)5]
2+.
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CHAPTER 4

Fully Variational Incremental CASSCF

The previous chapter introduced computational improvements to HCI enabling the

treatment of a (22e,168o) active space. While these improvements are impressive, the fact

remains that HCI still scales exponentially albeit with a smaller exponential factor than

FCI. Thus, theoretical advances to approximate FCI at reduced scaling—in particular, in

polynomial time—is necessary to kick us off the gold standard. This chapter explores this

possibility in the context of the complete active space self-consistent field (CASSCF) method.

The CASSCF method is a canonical electronic structure theory that holds a central

place in conceptualizing and practicing first principles simulations. For applications to

realistic molecules of interest, however, CASSCF must be approximated to circumvent

its exponentially scaling computational costs. Applying the many-body expansion—also

known as the method of increments—to CASSCF (iCASSCF) has been shown to produce a

polynomially scaling method that retains much of the accuracy of the parent theory and is

capable of treating full valence active spaces. Due to an approximation made in the orbital

gradient, the orbital parameters of the original iCASSCF formulation were not variationally

optimized, which limited the accuracy of its nuclear gradient. In this chapter, we explore

a variational implementation of iCASSCF where all parameters are fully optimized during

energy minimization. This chapter is based on work published previously in the Journal of

Chemical Physics.70

4.1 Introduction

Effective combinations of modern computer hardware and electronic structure theory have

allowed quantum chemical calculations to become standard practice in chemical research.

Many of these techniques are grounded in the Hartree-Fock (HF) method, a standard

molecular orbital theory that captures approximately 99% of the total electronic energy.2

To obtain chemical accuracy, however, the remaining 1% (the correlation energy) must be

recovered. Electron correlation can be split into static correlation (correlation from nearly
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degenerate electron configurations) and dynamic correlation (correlation to reduce electron

repulsion).2 One widely used, canonical strategy to capture (mostly) the static correlation

effects is the complete active space self-consistent field (CASSCF) method.2,47–52 In CASSCF,

single-particle orbitals are partitioned into inactive, active, and virtual spaces, with the active

space accounting for correlation effects beyond the HF approximation. In particular, the

complete set of electronic configurations is treated using a configuration interaction (CI)

expansion within the active space. CASSCF therefore is a systematic approximation to full

CI (FCI), where the latter is a CAS-CI with all orbitals included in the active space. While

CASSCF is a powerful method, the exponentially scaling costs of solving the CAS space CI

problem limits conventional implementations to around 18 electrons in 18 orbitals. Using

highly parallel compute architectures, this limit has been pushed upward to 22 electrons in

22 orbitals.52

Because the basic limitation in CASSCF is in the active space CI step, several strategies

have been introduced to partition the active space and reduce computational costs. Some

approaches include the restricted active space (RAS) SCF53–57 and the generalized active

space (GAS) SCF58,59 methods. While these do reduce computational cost, RASSCF and

GASSCF come at the price of greater ambiguity in selection of the active space. This

ambiguity exists in CASSCF as well, though to a lesser extent—this will be discussed in the

next section. Other methods have aimed specifically at reducing the computational effort of

the CI problem without changing the active space selection. These include quantum Monte

Carlo CI,24 density-matrix renormalization group (DMRG),60–66 and select CI methods32–34

such as heat-bath CI (HCI).40,41,43–45,162 These techniques—when converged to chemical

accuracy in the total electronic energy—remain exponentially scaling with growing system

size. Related to these are variational 2-particle reduced density matrix (2-RDM) methods,

which replace the CI wave function with a constrained optimization of the two-particle

density,163–166 allowing lower-order scaling with slight decreases in accuracy.

CASSCF’s underlying CI problem may also be solved by collecting correlation energies

from many small active spaces, and assembling these units into a close approximation of the

exact result. This technique relies on the many-body expansion (MBE), and in this context

is known as the method of increments. Stoll73–75 was the first to use MBE along with CI.

Later work by the Dolg group applied the MBE to coupled-cluster methods71,72 and more

recently, Gauss76–78 used MBE to approximate full CI. Our group has employed MBE to

approach large full CI79–81 and CASSCF69 problems. The MBE expression for the energy is

E = Eref +
∑
i

εi +
∑
j<i

εij +
∑
k<j<i

εijk + · · · , (4.1)

44



where the indices i, j, k refer to individual bodies. Each term, εx, in Equation 4.1 adds

correlation via interactions among the bodies included in x. Since this expansion derives the

total correlation energy as the sum of many small terms (rather than via one large CI), the

MBE provides a tractable approach to otherwise intractable electronic problems.

The incremental terms of Equation 4.1 are

εi = Ei − Eref ,

εij = Eij − Eref − εi − εj, (4.2)

εijk = Eijk − Eref − εij − εik − εjk − εi − εj − εk,

and so on for higher order terms. The expansion therefore introduces correlation beyond

the Hartree-Fock reference via CAS-CI calculations of 2n electrons in 2n orbitals. Since n is

expected to stay small even as the number of correlated electrons increases, the exponential

wall of the parent CAS problem is avoided. Prior work has shown the method of increments

recovers electron correlation to a high degree of accuracy with tractable computational effort

for full CI76–81 as well as for CASSCF.69

The MBE need not be restricted to solving the CI problem.167–171 The definition of

bodies and n-body interactions may also be extended to individual molecules or fragments of

molecules, as in the fragment molecular orbital (FMO) framework.170–176 The FMO method

has allowed for meaningful quantum chemical calculations of large molecular systems, well

beyond what can be approached with conventional means. For these calculations to be most

useful, however, reliable geometries—and hence analytic gradients—are needed. While the

original report of analytic gradients for FMO were valid only when using minimal basis

sets,172 the correct gradient has since been derived and implemented.173–176 This difference

also lies at the core of the present study.

Recently, approximate gradients for the incremental CASSCF (iCASSCF) approach were

introduced.69 In order to accomplish this, iCASSCF assembles the generalized Fock matrix

(required for the orbital gradient) from incremental 1- and 2-particle reduced density matrices

(1- and 2-RDM). The usual CASSCF formula for geometric gradients51 can then be used

once the orbitals are fully optimized. While elegant to a degree, one approximation was

used that resulted in an inexact Fock matrix, and therefore an approximate gradient (see

Theory Section for further details). While this resulted in reasonably accurate energies, the

Hellman-Feynman theorem could not strictly be applied to this approximation.177

Variational optimization of all wave function parameters is crucial for computing accurate

nuclear gradients in CASSCF as well as iCASSCF. In turn, having access to accurate

gradients allows exploration of potential energy surfaces (PESs) as well as obtaining many
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other molecular properties, for example the rotational entropy.177 In conventional CASSCF

implementations, however, the necessity of using a truncated active space for virtually

all molecules of interest greatly hinders its usefulness in practice. In particular for PES

exploration, large errors in reaction energies are observed (in some cases> 10 kcal mol−1)178–180

and potential energy profiles can be discontinuous.181,182 While such discontinuity may

sometimes be resolved by state-averaging (SA), SA-CASSCF also exhibits similar issues183

due mostly to the incomplete treatment of static correlation via the truncated active space.

On the other hand, iCASSCF is designed with full valence active space calculations in mind.

Since there are many choices for a full valence active space, a well-defined procedure for

choosing this space is important in making iCASSCF broadly useful and will be discussed in

the Theory section. One additional challenge in iCASSCF is the original implementation

suffers from a lack of variationality in the optimization procedure. An improvement here is

necessary for iCASSCF to be fully useful—with correct gradients and ability to treat full

valence active spaces—by modifying the iCASSCF procedure to permit fully variational

parameter optimization.

In this chapter, we introduce a variational iCASSCF procedure for electronic structure

simulations of chemically interesting systems. The variational iCASSCF will inherit the good

properties of the previous method, including close reproduction of CASSCF-level results as

well as ability to treat full valence active spaces. The method will also be demonstrated for

the first time on transition metal complexes, showing iCASSCF to be sufficiently robust to

tackle strongly-correlated systems with experimental relevance.

4.2 Theory

4.2.1 iCASSCF

Like CASSCF, iCASSCF is an iterative procedure consisting of an orbital optimization

step and a CI step. The primary procedural difference lies in the fact that iCASSCF utilizes

the many-body expansion to recover the correlation energy (Equation 4.1). Since the MBE

can correlate all valence electrons, a full valence active space is a natural choice in iCASSCF.

To define this active space, the generalized valence bond perfect pairing (PP) method184–188 is

used to obtain the initial orbitals. In the valence space, PP creates localized orbital pairs for

each electron pair—one bonding (or lone pair) orbital and one anti-bonding (or correlated)

orbital. The full valence active space in iCASSCF is therefore composed of all valence orbitals

from PP. The PP ansatz has the added benefit of recovering strong intrabond correlation

effects.
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In iCASSCF the bonding and anti-bonding orbital pairs from PP are then used to define

the individual bodies of the MBE, and therefore the CAS-CI problem for the full CAS space

is never explicitly constructed. Instead, the total correlation energy is computed by solving

the CAS-CI problem using many smaller active spaces, as shown in Figure 4.1. Prior work

has shown the 3-body expansion to be a good compromise between accuracy and cost for the

method of increments applied to full CI as well as CASSCF.69,79–81 While studies of the MBE

(in FMO) have shown that the errors of the MBE are extensive, they also report that error

growth is small and negligible in practical calculations.167,168 This same behavior is expected

from iCASSCF due to the extensivity of the energy that is intrinsic to MBE.

Figure 4.1: a. The full valence CASSCF active space is decomposed into b. pairs of localized
bonding and anti-bonding orbitals which define the bodies in the many-body expansion.
Solving the CAS-CI problem within these active spaces provides the 1-body interactions (εi)
in Equation 4.1. c. The combination of any two active spaces in the 1-body terms generates
the 2-body terms. Solving the CAS(4,4)-CI problem for these new active spaces returns
the 2-body interaction energies (εij) in Equation 4.1. Higher-order expansions are similarly
defined (not shown).

In CASSCF, the energy can be expressed using the 1- and 2-RDMs by

E =
∑
pq

Dpqhpq +
∑
pqrs

dpqrsgpqrs, (4.3)

where hpq and gpqrs are the 1- and 2-electron integrals and the RDMs are defined using the

usual expressions from second quantization, Dpq = ⟨ψ|â†pâq|ψ⟩ and dpqrs = ⟨ψ|â†pâ†râsâq|ψ⟩.
The generalized Fock matrix, which is essential for orbital optimization, can similarly be
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defined by the 1- and 2-RDMs

Fmn =
∑
q

Dmqhnq +
∑
qrs

dmqrsgnqrs. (4.4)

Using the method of increments, the 1-RDM can be computed by

Dtot
pq = Dref

pq +
∑
i

∆Di
pq +

∑
j<i

∆Dij
pq + · · · , (4.5)

where the ∆Dx
pq terms are changes in the density due to interactions between the bodies in x.

Analogous to Equation 4.2,

∆Di
pq = Di

pq −Dref
pq

∆Dij
pq = Dij

pq −Dref
pq −∆Di

pq −∆Dj
pq, (4.6)

and higher-order n-body densities are defined analogously. The incremental expansion of the

1-RDM applies similarly to the 2-RDM. Taken together with the expressions for E and F ,

this means that any quantity which depends on the RDMs may be constructed via increments.

Since there is only one definition of the molecular orbitals (across all incremental terms),

there is no complication in assembling the RDMs in this way. Since the orbital gradient is

defined by the anti-symmetric part of the Fock matrix,

Eo
pq = 2(Fpq − Fqp), (4.7)

orbital optimization can follow naturally from the many-body expansion.

There exists, however, a potentially complicating issue in incremental Fock matrix con-

struction via Equation 4.4 in iCASSCF theory. Specifically, since the full CAS-CI is not

performed within the total active space, the energy is not invariant to active-active orbital

rotations.2 At low orders of MBE (low n) this invariance is significant, though invariance can

be restored at high n. In practice this lack of invariance can complicate iCASSCF orbital opti-

mization compared to CASSCF, since CASSCF normally would avoid active-active rotations

as they have zero gradients. To work around this issue, our prior strategy was to symmetrize

the active-active block of each incremental Fock matrix69 and explicitly restore much of the

expected symmetry. At its core, this symmetrization projects out some components of the

orbital gradient (Equation 4.7), and therefore the resulting iCASSCF orbital optimization

is not fully variational. Energies and gradients could then be acquired, but the gradients

were only accurate to around 2× 10−4 a.u. In order to achieve fully variational parameter
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optimization for the iCASSCF method, the full, unprojected orbital gradient must be used

for orbital optimization.

Before detailing the variational iCASSCF procedure, a discussion of orbital rotations and

the effect of single excitations is warranted. In CASSCF, orbital rotations of the form exp(κ)

are used in the orbital optimization steps, where κ is an anti-symmetric matrix defined by

κ =
∑
p>q

κpq(â
†
pâq − â†qâp). (4.8)

A Taylor series expansion of exp(κ) then results in first and second order terms containing

single (â†pâq) and double (â†pâqâ
†
râs) excitations. Within the active space, these single exci-

tations from orbital rotation coincide with single excitations within CI and are therefore

redundant to a first-order approximation. Figure 4.2 shows this effect, where the orbital

gradients within the active space increase when CI singles excitations are removed. Gradients

outside of the active space are also affected, but to a much lesser extent. In practice, reduced

redundancy in the iCASSCF parameter space is expected to permit more facile optimization

of those parameters. This approach—removing the singles excitations from the CI—allows

fully variational iCASSCF optimization.

Figure 4.2: The magnitude of the orbital gradient (see Equation 4.7) for formaldehyde is
shown with single excitations (left) and without (right). The gradient is truncated so only
values corresponding to the first twenty orbitals are shown. One can see that the magnitude
of gradient terms increase as the redundant single excitations are removed.

While the use of the Hellman-Feynman theorem177 results in the correct geometric gradient,

the underlying energy function is no longer strictly CAS-CI. This is due to the fact that
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though the active-active singles excitations of the CI are largely redundant with the orbital

rotations, they do not completely overlap. The truncated CI therefore does not precisely

reproduce the CAS-CI result. Similar approximations in orbital-optimized coupled-cluster

(CC) theory have shown the error due to missing singles to be small,189–191 and benchmarks

in the present study will show the omission of single excitations from iCASSCF results in

small differences from conventional CASSCF.

The missing correlation from single excitations may be recovered by reintroducing them

once orbital optimization is completed. In other words, a regular iCAS-CI may be performed

using singles-free iCASSCF optimized orbitals. For the remainder of the chapter, the singles-

free procedure is denoted simply as iCASSCF. When discussing iCAS-CI, it is implied that

iCASSCF orbitals are used.

4.2.2 Computational Effort

The calculation of all n-body interactions in iCASSCF requires solving(
N

n

)
=

N !

(N − n)!n!
(4.9)

CAS-CI problems. The computation therefore scales with O(Nn) for large N , where N refers

to the total number of bodies (one half of the number of electrons in the active space). Since

each CAS-CI problem requires more computational effort as n increases, it remains desirable

to truncate the expansion to reduce the O(Nn) scaling and prefactor. Herein, the iCASSCF

expansion is limited to n = 3 or n = 4.

Computational effort can be further diminished by screening the higher order interac-

tions.78,171 The screening prescription is as follows. Once the jth order of the expansion has

been generated, the tuples involved in the (j + 1)th order are generated. Prior to evaluation

of the (j + 1)th order interactions, the order of magnitude of the terms is predicted using the

current (jth order) terms. Terms predicted to be small are then omitted, thus reducing the

number of (j+ 1)-body calculations required. For example, when predicting the magnitude of

a 3-body term, one would examine the three 2-body terms which generate the 3-body term.

If the 2-body terms, εij, are below a predetermined threshold, then the 3-body interaction

is not computed. In this case, screening would avoid computing the full cubic number of

3-body terms. In general, the effect of screening propagates to higher order terms and allows

scaling closer to O(Nk) where k < n for an n-body expansion. In principle, the significant

j + 1-body tuples could be estimated at every SCF step, however, in this study the selection

of tuples is only performed once before any SCF iterations.
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4.3 Computational Details

The variational iCASSCF method is implemented in a development version of Q-Chem

5.0.192 Results for variational iCASSCF were obtained using similar parameters as a previous

study,69 and differences are noted here. Simulations use the 6-31G* basis set, with 2-electron

integrals computed using the resolution of the identity (RI) approximation193,194 and the

RIMP2-VDZ auxiliary basis. Bodies are generally defined using bonding-antibonding pairs,

initially from perfect pairing.184–188 Exceptions are noted where appropriate. The reference

energy (Eref in Equation 4.1) is computed using a Hartree-Fock reference configuration.

iCASSCF is considered converged when the norm squared of the orbital gradient is below

4× 10−8. All active spaces are full valence.

Conventional CASSCF calculations used localized orbitals from CCSD as initial orbitals

and were performed without density fitting. The MOLPRO 2012.1 electronic structure

package195 was employed for CASSCF. The same small-molecule benchmarks as in our

previous study69 were reexamined here using the new algorithm. In computing the energy

for formaldehyde the CO π-system and O lone-pair orbitals are combined into a single body.

The singlet-triplet gap of oxoMn(salen)Cl, an intermediate in the Mn(III)(salen)-catalyzed

epoxidation reaction,196,197 was also examined. The iCASSCF reference energy and configura-

tion are from ROHF, and the calculations are considered converged when the norm squared

of the orbital gradient is below 5× 10−7. For oxoMn(salen)Cl, ωB97X-D/6-31G* was used to

obtain the geometry, starting from the truncated complex used in previous studies of this

system.41,198–204 The model complex has a full valence active space of (84,84). Due to large

degrees of correlation between them, O (oxo) lone pairs and Mn=O σ- and π-systems are

clustered as a single body.

Cyclobutadiene automerization was explored using a Python implementation of the

growing string method (PyGSM).205–208 A double-ended string was grown and optimized with

7 nodes along the reaction path. For this reaction, the 6-31+G** basis and RIMP2-cc-pVDZ

auxiliary basis were used. The iCASSCF calculations for this reaction path use ROHF for the

reference energy and configuration. The calculations are converged when the norm squared

of the orbital gradient is below 2× 10−8. The many-body expansion goes out to n = 3. The

four valence π orbitals are grouped as a single body in these calculations.

4.4 Small-molecule benchmarks

To validate the new iCASSCF procedure, comparisons are made to conventional CASSCF

energies and geometries. The benchmark set69 consists of small molecules with 10-14 valence

electrons: ethylene, formaldehyde, hydrogen cyanide, hydrogen peroxide, and methanol.
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Comparisons to results in our previous study can be found in Appendix C. For CASSCF as

well as iCASSCF, full valence active spaces with an equal number of orbitals and electrons

were used (starting from PP orbitals). To test the quality of the optimizations, iCAS-CI energy

evaluation was used to recover correlation from missing singles, using the final iCASSCF

orbitals.

Table 4.1 shows the variational iCASSCF and iCAS-CI energies compared to conventional

CASSCF. The energy differences between iCASSCF(n = 3, n = 4) and CASSCF differ by

more than 2 mHa in all benchmarks and in some cases, iCASSCF(n = 4) has larger deviation

than the iCASSCF(n = 3). However, when including single excitations via iCAS-CI, the

energies are substantially improved. The largest error for iCAS-CI(n = 3) is 0.9 mHa, and

for iCAS-CI(n = 4), the largest error is reduced to 0.5 mHa (see Figure 4.3c). Across all

the benchmarks, iCAS-CI(n = 4) resulted in a mean unsigned error of 0.3 mHa compared

to conventional CASSCF. In some instances, the iCAS energy drops slightly below the

CASSCF energy. While the MBE does tend towards the exact energy with increasing n,

it is not guaranteed to do so from above. Thus iCASSCF, while variational with respect

to optimization of its internal parameters, does not provide an upper bound to the parent

CASSCF energy.

The characteristic bond distances and angles produced by the new iCASSCF procedure

are in good agreement with conventional CASSCF. For n = 3 and n = 4, the maximum error

in angles is 0.5◦ and this occurs in the H-O-O-H dihedral (Figure 4.3a). The bond distances

are also satisfactory, though in some cases the n = 4 bond distances have slightly larger errors

than n = 3. Regardless, the error remains below 0.006 Å (0.6 pm) for both n = 3 and n = 4.

Table 4.1: Total energies of the small molecule benchmark set from iCASSCF, iCAS-CI, and
CASSCF using the 6-31G* basis set.

Molecule iCASSCF(n = 3) iCASSCF(n = 4) iCAS-CI(n = 3) iCAS-CI(n = 4) CASSCF

Ethylene -78.1747 -78.1742 -78.178 -78.1774 -78.1777
Formaldehyde -114.0453 -114.0451 -114.0506 -114.0504 -114.0509

Hydrogen Cyanide -93.042 -93.0412 -93.0452 -93.0439 -93.0443
Hydrogen Peroxide -150.989 -150.9895 -150.9944 -150.9951 -150.9953

Methanol -115.2211 -115.2221 -115.2258 -115.2259 -115.2261

To directly test the variationality of the iCASSCF procedure, finite difference gradients

were computed using a five-point central difference formula and compared to the analytical

gradients. The norms of the differences between analytical and numerical gradients are

provided in Table 4.2. At n = 3, the largest difference between numerical and analytical

gradients is 1.05×10−4 Ha Bohr−1. At n = 4, this maximum has a similar value of 8.25×10−5

Ha Bohr−1. The agreement between numerical and analytical gradients is satisfactory, as a
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Figure 4.3: Comparison of iCASSCF to CASSCF (a) bond angles, (b) bond distances, and
(c) energies. Included with the energy comparisons are iCAS-CI energies which use converged
iCASSCF orbitals.

typical gradient threshold for a stationary geometry is on the order of 10−4 Ha Bohr−1. The

total error is similar to other analytical gradients relying on the RI approximation.209,210

Table 4.2: Norm of difference between analytical and numerical gradient (Ha Bohr−1).

calc Ethylene Formaldehyde Hydrogen Cyanide Hydrogen Peroxide Methanol

iCASSCF(n=3) 5.59E-05 1.97E-05 6.43E-06 4.49E-05 1.05E-04
iCASSCF(n=4) 6.63E-06 2.36E-05 2.29E-06 8.25E-05 5.76E-05

4.5 oxoMn(salen)Cl

Transition metal complexes contain challenging electronic correlation effects due the

interaction of d-electrons with the σ- and π-bonds of the ligands. In particular, the ox-

oMn(salen)Cl complex is a postulated intermediate in the Mn(III)(salen)-catalyzed epox-
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idation reaction.196,197 This species is difficult to isolate and characterize due to its short

lifetime, having a highly reactive oxo ligand. A truncated oxoMn(salen)Cl complex has been

previously studied using density functional theory198,199 and multi-configurational methods

including CASSCF,200 SA-CASSCF,201 DMRG-SCF202–204 and stochastic HCI (SHCI).41 As

will be discussed shortly, conclusions on the electronic structure of this complex are lacking,

due to the large number of highly correlated electrons surrounding the central Mn=O bond.

Fortunately, the full valence active space of 84 electrons in 84 orbitals is approachable using

iCASSCF (timing information is available in Appendix C). This example will therefore be

the first test of full valence iCASSCF on a transition metal complex to date.

Table 4.3: The singlet-triplet gap of oxoMn(salen)Cl from previous multi-configurational
studies are listed.

Method Basis Delta,

CASSCF(12,11)200 6-31G* 2.8
SA-CASSCF(12,11)201 6-31G* 3.0
DMRG-SCF(28,22)202 6-31G* -5.0
DMRG-SCF(28,22)202 cc-pVDZ -5.3
DMRG-SCF(26,21)203 cc-pVDZ 0.4
DMRG-SCF(28,22)204 cc-pVDZ 0.7
DMRG-SCF(28,22)204 cc-pVTZ 1.9

SHCI(28,22)*41 cc-pVDZ 0.9

*SHCI calculation used the DMRG-SCF(28,22) orbitals from ref 204

Several studies, starting with one by Linde et al., suggested that multiple spin states of

oxoMn(salen)Cl are relatively close together in energy (Table 4.3). That study used density

functional theory to predict that the singlet, triplet, and quintet are within 2.6 kcal mol−1 of

one another.198 Alternatively, Abashkin et al. found the oxoMn(salen)Cl system to have a

singlet state lower than the triplet state by 6.7 kcal mol−1.199 Using CASSCF(12,11), Ivanic

et al. predicted the triplet to be more stable than the singlet by 2.8 kcal mol−1, although they

were unable to converge the CASSCF(12,11) triplet wave function due to a large gradient

between the dxy orbital in the active space and an inactive orbital on chlorine.200 Instead

the dxy orbital was omitted from the active space and a CASSCF(10,10) wavefunction was

computed, followed by orbital localization and a CAS-CI(12,11) calculation so that the triplet

energy could be compared. A later study by Sears and Sherill was able to converge the

triplet wavefunction using a (12,11) active space, but required state averaging to do so.201

This SA-CASSCF(12,11) found the triplet to be higher than the singlet by 3.0 kcal mol−1.

DMRG-SCF studies gave singlet-triplet gaps (E3−E1) of around -5 kcal mol−1 202 and 0.4 kcal

mol−1.203 Another DMRG-SCF study by Sharma et al. predicts a singlet-triplet gap of 0.7
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kcal mol−1 and 1.9 kcal mol−1 when using the cc-pVDZ and cc-pVTZ basis sets, respectively.

Perturbative (PT) corrections to these energies flip the sign of the singlet-triplet gap in

each basis set.204 The DMRG study by Stein et al. used a (26,21) active space,203 while the

other DMRG studies used a (28,22) active space. SHCI (which utilized DMRG-SCF orbitals)

resulted in a singlet-triplet gap of 0.9 kcal mol−1.41 The conflicting predictions (Table 4.3)

for the sign of the singlet-triplet gap—and its value—demonstrate the challenges of applying

electronic structure theory in this strongly correlated system. All of these spin gaps could

easily be perturbed by additional correlation from out-of-active-space orbitals, as found by

the DMRG-PT results, leaving the correct description of correlation in this complex yet to

be resolved.

Any active space smaller than the full valence limit is possibly insufficient to provide

an accurate depiction of the electronic structure of the oxoMn(salen)Cl complex. The full

valence active space of the truncated oxoMn(salen)Cl model has 84 electrons in 84 orbitals,

which would result in a CAS involving 1047 electronic configurations. By comparison, a

(12,11) active space—used in the conventional CASSCF studies200,201—only has 6 × 104

electron configurations, while a (28,22) active space—used in the DMRG studies41,202,204—has

approximately 1010 configurations. On the other hand, the full valence active space of the

oxoMn(salen)Cl complex can be explored with iCASSCF without bias from active space

truncation.

In this study, the O lone pair orbitals and Mn-O σ- and π-systems of oxo-Mn bond

are highly correlated and therefore combined as a single body. This selection was made by

grouping the initial (simple) bodies that had the largest 2-body correlation energies. As with

prior examples in this article, the electronic total energy is computed for the oxoMn(salen)Cl

model by obtaining orbitals at the iCASSCF level and using the converged orbitals in a

subsequent iCAS-CI calculation. The total energies and singlet-triplet gaps are listed in Table

4.4. At the highest level of iCASSCF theory, n = 4, iCAS-CI additionally recovers 65.0 mHa

of correlation for the singlet and 55.2 mHa for the triplet state. Although iCASSCF(n = 4)

predicts the triplet to be lower in energy than the singlet by 1.0 mHa (0.6 kcal mol−1),

inclusion of the single excitations in iCAS-CI(n = 4) results in a singlet ground state with

the triplet 8.8 mHa (5.5 kcal mol−1) higher in energy. The n = 4 gaps agree with the

n = 3 values to a close margin, suggesting that the n-body expansion of iCAS is adequately

converged. Since Table 4.1 shows that the iCAS-CI energies are closer to CASSCF than those

of iCASSCF, a singlet ground state appears to be preferred by the oxo-Mn(salen)Cl.

Figures 4.4 and 4.5 show the iCASSCF(n = 3) natural orbitals (NOs) for the π spaces of

the singlet and triplet, respectively. These orbitals are local in nature, without the expected

mixing that usually characterizes NOs. This lack of mixing is due to lack of singles excitations
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Table 4.4: Total energies of the oxoMn(salen)Cl complex from iCASSCF and iCAS-CI using
the 6-31G* basis set.

State iCASSCF (n=3) iCAS-CI (n=3) iCASSCF (n=4) iCAS-CI (n=4)

Singlet −2,252.2588 −2,252.3224 −2,252.2590 −2,252.3240
Triplet −2,252.2599 −2,252.3144 −2,252.2600 −2,252.3152
Gap −0.0011 0.0081 −0.0010 0.0088

Figure 4.4: Select iCASSCF(n = 3) natural orbitals in the π space for the singlet state of the
oxo-Mn(salen)Cl complex. The natural occupation numbers are displayed below each orbital
and the HONO and LUNO are boxed.

Figure 4.5: Select iCASSCF(n = 3) natural orbitals in the π space for the triplet state of the
oxo-Mn(salen)Cl complex are shown. The occupation of each orbital is provided below the
oribtal. The SONOs are boxed.
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at the iCASSCF level of theory, and more conventional NOs emerge when using iCAS-CI

instead (see Appendix C, Figures C.3 and C.4). Close inspection of the triplet NOs (Figure

4.5) reveals that the triplet state is a ligand-to-metal charge transfer (LMCT) state.

The identification of a LMCT triplet state instead of a dxy-π∗(Mn-O) triplet is surprising,

given that the latter is predicted by all prior studies.200–204 Two reasons are suggested to

explain this finding: 1) The full valence active space captures more correlation, allowing the

LMCT state to drop lower in energy than the dxy-π∗ state, or 2) either state is the optimized

SCF state, but not necessarily the true lowest-energy triplet. Either way, the LMCT state is

predicted to be close in energy to the singlet ground state by iCAS, suggesting it is accessible

under relevant experimental conditions. Prior studies have indeed found LMCT states to

be common for metal-salen complexes and metal-salen analogues,211–214 which supports this

possibility. Additional studies involving multi-state iCAS (or other highly correlated levels of

theory) will be needed to better resolve this challenging situation.

4.6 Cyclobutadiene Automerization

The automerization of cyclobutadiene (see Figure 4.6) from one D2h symmetry rectangle

to another is a challenging, strongly correlated electronic structure problem. In the reactant

state the rectangular D2h starting geometry can be described by Jahn-Teller effect, producing

a lower symmetry than the square planar D4h geometry due to anti-aromaticity of the

latter structure. The four π orbitals are strongly correlated due to near degeneracy of the

HOMO/LUMO, giving cyclobutadiene a biradical electronic state.215,216 While a majority of

prior studies have assumed the TS takes a square planar shape with D4h symmetry,153–160

one RASSCF study predicted the TS to be an isosceles trapezoid with C-C-C bond angles of

90.16◦ and 89.84◦.161 These prior theoretical studies predict automerization barriers ranging

between 4.0 and 21.0 kcal mol−1,153–161 while experimental results place the barrier between

1.6 and 10 kcal mol−1.217 To provide insight from iCASSCF into this reaction, the Growing

String Method (GSM) was applied to compute a reaction pathway and exact transition state

(i.e. saddle point).

The iCASSCF energy profile for the D2h ⇌ D2h pathway is shown in Figure 4.6. The

automerization barrier is predicted to be approximately 11 kcal mol−1 at the iCASSCF

(geometry optimization) and iCAS-CI (single point energy) levels of theory, both of which

are just outside of the estimated experimental bounds.217 The singles excitations account for

between 8.7 mHa and 9.1 mHa of correlation along the pathway, suggesting that the errors

due to omitting singles largely cancel out.
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Figure 4.6: Optimized reaction pathway via GSM and iCASSCF(n=3)/6-31+G**. Single
point energies from iCAS-CI(n=3) are nearly identical, and are shown in red.

Figure 4.7 shows that the TS takes on an almost square structure, with the C-C-C bond

angles being within 0.01◦ of right angles and the C-C distances between equivalent to within

0.001 Å. The TS geometry is not fully symmetric, however, as the carbon atoms are slightly

non-planar with a C-C-C-C dihedral angle of 0.12 ◦ and the hydrogen atoms come out of

plane at angles between 0.5◦ and 3.1◦. To test the energetic impact of this distortion against

the expected fully symmetric TS geometry, the energy was computed for the D4h structure

closest to the GSM-optimized TS. Using C-C and C-H bond lengths of 1.4672 Å and 1.0930

Å respectively, the TS energy goes down slightly, by less than 0.1 mHa at iCASSCF and

iCAS-CI levels of theory. While GSM and the previous RASSCF study do find slightly

non-symmetric structures for the TS, these are likely just the result of the PES being nearly

flat near the D4h geometry. Either way, iCASSCF geometry optimization was sufficiently

accurate to place cyclobutadiene in a nearly D4h configuration at the TS, which was within a

negligible margin (0.1 mHa) of energy from the fully symmetric TS.
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Figure 4.7: Optimized transition state geometry for cyclobutadiene automerization from
GSM. The C-C bond lengths are provided in Å, and some key bond angles and dihedrals are
shown.

4.7 Conclusions

The iCASSCF method is designed to bypass the exponential wall of the full CI problem

and permit CAS-like electronic structure simulations with all valence electrons correlated. In

the proposed fully variational iCASSCF procedure, single excitations are omitted from the

wave function, which allows orbital optimization to make the energy fully stationary with

respect to active-active rotations. This variational procedure not only has a well-defined

gradient, but it also permits geometry optimization to the same level of accuracy as its

parent theory, conventional CASSCF. Accurate energies are easily evaluated by performing

an iCAS-CI calculation with single excitations, using the optimized orbitals from iCASSCF.

iCASSCF has the ability to treat full valence active spaces for relatively large molecules,

which results in unambiguous active space choices when valence bond orbitals are used as the

MBE bodies. This facilitated the incorporation of iCASSCF with the growing string method,

allowing for reaction path optimization of strongly correlated systems such as cyclobutadiene

automerization. A TS search by GSM results in a TS which is not fully symmetric, however

the D4h geometry is stabilized by less than 0.1 mHa relative to the GSM TS. In other words,

the PES near the D4h geometry is nearly flat with respect to small out-of-plane bending of

the hydrogen.

While our previous study had shown the ability of iCASSCF to treat large active spaces

(116,116),69 the variationality of the new procedure has a profound effect. Using our previous

implementation—which relied on a numerical prescription to deal with the lack of invariance

to active-active rotations—orbital optimization could be troublesome for some chemical

systems, for instance the oxoMn(salen)Cl complex. The new combined iCASSCF/iCAS-CI

procedure is able to tame the strong correlation present in the oxoMn(salen)Cl complex with
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an (84,84) active space, predicting a singlet ground state with a triplet state about 5 kcal

mol−1 higher in energy. Furthermore, the low-lying triplet state was surprisingly predicted

to be a LMCT state, in contrast to the dxy-π
∗(Mn-O) state predicted by previous studies.

In summary, this article’s modifications to iCASSCF retain its ability to treat large full

valence active spaces, and open the door to examining the challenging electronic structure of

transition metal complexes.

Introducing variationality into iCASSCF therefore has made the method more robust in

computing strongly correlated systems. Further development and optimization is expected to

continue expanding the scope of systems and chemical processes that may be studied with

the iCASSCF family of methods.
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CHAPTER 5

The Numerical Evaluation of Slater Integrals on Graphics

Processing Units

The previous chapters have showcased computational and theoretical advances in quantum

chemistry methods aimed at recovering electron correlation for large electronic systems. In

this chapter, we instead target the basis set, which is essential for accurately representing the

electron distribution. In most quantum chemical calculations, atom-centered Gaussian-type

orbitals (GTOs) are used due to the availability of fast, analytic electron integrals. However,

GTOs have incorrect short-range and long-range behaviors, thus they fail to capture the

electron density properly. A better choice of basis is the Slater-type orbital (STO), which can

represent the expected behaviors of molecular wave functions. However, the lack of analytic

electron integrals have hindered its wide-spread adoption. This chapter presents SlaterGPU,

a GPU accelerated library that uses OpenACC to numerically compute Slater-type orbital

(STO) integrals and is based on previously published work from the Journal of Computational

Chemistry.218

5.1 Introduction

Advances in quantum chemistry and computer hardware have facilitated the routine use

of electronic structure simulations for chemical applications. Some of the most widely used

theories make use of one-electron, atom-centered basis functions2 to represent the electron

density. The simplest wave function that approximately solves the Schrödinger equation is

Hartree-Fock (HF), which represents the wave function using a single Slater determinant.

While HF is not a quantitatively accurate theory, it forms the basis for more sophisticated

theories. In many canonical, post-HF methods, evaluation of Hamiltonian elements in the

Schrödinger picture requires computing integrals of the form
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Oµν = ⟨χµ|Ô1|χν⟩ =

∫
χµ(r)Ô(r)χν(r)dr, (5.1)

Oµνλσ = ⟨χµ(1)χν(1)|Ô2|χλ(2)χσ(2)⟩

=

∫ ∫
χµ(r1)χν(r1)Ô2χλ(r2)χσ(r2)dr1dr2. (5.2)

The first equation denotes 1-electron quantities such as the overlap Ô1 = 1, the kinetic energy

Ô1 = −1
2
∇2, and the nuclear attraction Ô1 = ZA

R1A
operators. 2-electron operators include the

Coulomb repulsion Ô2 = 1
r12

, where r12 is the distance between electrons 1 and 2. Derivatives

of these terms, for example with respect to nuclear position, are also quantities of interest.

Amongst these integrals, the electron repulsion integrals (ERIs) are the most difficult (and

numerous) to evaluate, being 2-electron quantities that require six-dimensional integration.

In addition, the 1
r12

operator contains a singularity at every point in three-dimensional space,

further challenging their integration. Consequently, the choice of basis is important for not

only accurate representation of the molecular wave function, but also for computational

evaluation of integrals.

One physically-motivated choice are Slater-type orbitals (STOs), which are hydrogen-like

orbitals of the form

S(ζ, n, l,m, r, θ, ϕ) = NSTOrn−1e−ζrZlm(θ, ϕ), (5.3)

where ζ is the exponent, n, l,m are the usual atomic quantum numbers, r, θ, ϕ are spherical

coordinates, NSTO is the normalization constant, and Zlm are the spherical harmonics.2–4

The STOs satisfy the Kato cusp and exponential decay of atomic wave functions,2,219,220

making them a natural basis choice for quantum chemical calculations. However, the ERIs

over STOs do not have a known general analytic form.

The difficulties of STO integration led to the expansion of STOs in terms of Gaussian-type

orbitals5 (GTOs)

G(α, n, l,m, r, θ, ϕ) = NGTOe−αr2Slm(r, θ, ϕ), (5.4)

where the Slm are the real solid harmonics.2 The GTOs benefit from the Gaussian product

rule, i.e. the product of two GTOs is again a GTO, which simplifies Equation 5.2 from a

4-center, 2-electron integral to 2-center, 2-electron. The 2-center, 2-electron integral can

be evaluated over the Coulomb potential of one GTO reducing a 6-dimensional integral to

3-dimensions. These nice analytical properties of GTOs facilitated the development of fast

analytical integral evaluation.221–225
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While GTOs can be quickly evaluated using modern integral libraries, they do not contain

the correct short- and long-range behaviors expected in molecular wave functions.9 For

example, the cusp near the nucleus is important for computing properties such as nuclear

magnetic resonance shifts and polarizabilities,6,7 but the cusp is not present in the GTO

basis, and only crudely treated by using contracted sets of GTOs. Exponential decay of the

wave function for an accurate description is required for precise quantification of the HOMO

energy, but this behavior is also absent in GTOs.8

The imperfections of GTO basis sets have left room for the continued development and

use of STOs for quantum chemical applications. Several schemes have been developed to

compute general STO integrals. One approach is to expand each STO in a very large number

of GTOs and compute the GTO integrals analytically.226–228 Additionally, Monte Carlo has

been used to correct integrals over Gaussian expansions to evaluate the Slater quantity.229

These schemes are prohibitively expensive for routine use. While the focus of this article is

on the use of STOs in integrals such as Equations 5.1 and 5.2, STOs have seen frequent use

in quantum Monte Carlo (QMC) wave functions, where the 1- and 2-electron integrals are

not important.230–233

An attractive alternative to explicit evaluation of STO ERIs involves density fitting—in

particular the resolution-of-the-identity (RI) approximation (see Theory and Computational

Details)—which allows Equation 5.2 to be approximated as a tensor product of 2- and

3-index ERIs. Within the RI approximation, one of the two electrons is described by a single

basis function. This facilitates the use of a Coulomb potential to represent one electron

without relying on an explicit basis set product rule—which does not exist for STOs—to

condense multiple centers. This simplification, which is only necessary for systems with

at least four distinct atomic centers, allows STO integration of ERIs to be amenable to

numerical quadrature schemes. The Amsterdam Density Functional (ADF) package and

other density functional theory (DFT) codes implement a density fitting approach to use

STOs in DFT.4,6,234,235 Other density fitting frameworks have allowed STOs to be used

used in approximate MP2236, double-hybrid DFT237, and Green’s function methods238,239.

These previous STO studies, however, did not generate the full complement of ERIs required

for multiconfigurational methods such as those based on configuration interaction,40,79–81

multiconfigurational self-consistent field47,48,69,70 and coupled cluster.72,240–242

This chapter introduces and benchmarks a graphics processing unit (GPU) library for

evaluating STO integrals for wave function theories. The chapter will show that these can

be accurately and efficiently evaluated using numerical integration by combining the RI

approximation with the STO Coulomb potential. The large number of processing cores

and high memory bandwidth make modern GPUs the architecture of choice for evaluating
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and summing numerical grids. For additional performance, the integrals are also computed

using mixed-precision evaluation. Timings suggest that this library allows STOs to be useful

alongside strongly correlated wave function theories. Accuracy benchmarks indicate minimal

loss in accuracy from using mixed-precision relative to double-precision. The resulting code,

called SlaterGPU,243 is the first reported library to use GPUs to accelerate STO integrals

and evaluate the full set of 1- and 2-electron STO integrals up to the 6h subshell as well as

5g for first derivatives for the auxiliary basis.

5.2 Theory and Computational Details

The present STO integral scheme relies on numerical integration over atom-centered grids.

Grid-based integration can make use of single instruction, multiple data (SIMD) parallelism

and therefore can leverage GPU hardware for acceleration. Even with this acceleration,

the 6-dimensional ERIs remain too costly for routine computations. The dimensionality

of integration can be reduced, however, by employing the resolution-of-the-identity (RI)

approximation,244–246 where the Coulomb potentials for the auxiliary basis functions are

known analytically. The various components of the STO integral algorithm are explained in

the following sections: the Resolution of the Identity, Grid Construction, Implementation on

GPU, and Computational Details.

5.2.1 Resolution of the Identity

This section focuses on simplifying the challenging ERIs for numerical evaluation. The

expressions for numerically evaluating the 1-electron integrals are listed in Section D.1 of

Appendix D. In the RI approximation, the 4-index ERIs (µν|λκ) are decomposed into tensor

products of 2- and 3-index integrals by representing the density in terms of an auxiliary basis.

Using the Coulomb metric, the integral can be approximated with the expression244–246

(µν|λκ) ≈
∑
PQ

(µν|P )(PQ)−1(Q|λκ) =
∑
Q

BQ
µνB

Q
λκ, (5.5)

where

BQ
µν =

∑
P

(µν|P )(PQ)−1/2. (5.6)

In a numerical integration scheme, Equation 5.5 not only reduces the count of numerical

integrals for a given basis set size (N) from O(N4) to O(N3), it also has a secondary
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consequence that is useful in the context of STO basis functions. Specifically, the integral

(P |µν) =

∫ ∫
χP (r1)

1

r12
χµ(r2)χν(r2)dr1dr2 (5.7)

can be simplified to

(P |µν) =

∫
V P
C (r)χµ(r)χν(r)dr (5.8)

by using the known analytical form of the single-Slater Coulomb potential. In spherical

coordinates, this potential has the form4

VC(ζ, n, l,m, r, θ, ϕ) =
4π(2ζ)n+(1/2)√

(2n)!(2l + 1)
Zlm(θ, ϕ)Inl(r), (5.9)

where

Inl(r) = r−l−1

∫ r

0

(r′)n+l+1e−ζr′dr′ + rl
∫ ∞

r

(r′)n−le−ζr′dr′. (5.10)

Inl has analytic expressions using finite Laurent polynomials for each n, l of interest (See

Section D in Appendix D).

Figure 5.1: The (6H|6H) integral is scanned in the (0.370, 0.370, 0.853) direction with the left
center at the origin. Evaluations are in mixed precision using either the Laurent polynomial
expansion of Equation 5.10 or the lower incomplete gamma function, where mixed precision
is defined similarly to Equation 5.14. Both basis functions have m = 0 and ζ = 1.

For large angular momentum l, the Laurent expressions (See Section D.2 in Appendix

D)—and especially their derivatives—exhibit numerical instability, especially when using

mixed-precision arithmetic, which is essential for high performance integral evaluation. This

can result in non-smooth integrals as shown in Figure 5.1, which can in turn result in non-

smooth or discontinuous energies. Instead of applying the Laurent expressions, Equation 5.10
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can be evaluated using lower incomplete gamma functions, which have fast, numerically precise

implementations247. The final form of Equation 5.10 used in the current implementation of

SlaterGPU is

Inl(r) = r−l−1ζ−l−n−2
{

(rζ)2l+1 [(−l + n)!− γ(−l + n+ 1, rζ)] + γ(l + n+ 2, rζ)
}
, (5.11)

where γ(s, x) is the lower incomplete gamma function,

γ(s, x) =

∫ x

0

ts−1e−tdt. (5.12)

After evaluation of all 2- and 3-center Coulomb integrals, the full set of 4-index ERIs can be

reconstructed using Equation 5.5. SlaterGPU therefore uses the RI approximation for Slater

integrals, similar to prior implementations for DFT applications,234,235 but further provides

all 4-index integrals, (ij|kl), which are not generated or required for DFT. This allows the

SlaterGPU library to be useful for wave function theories, which require a larger set of ERIs.

In particular, while prior codes demonstrated applicability to l ≤ 3,235,239 SlaterGPU is shown

here to be useful for l ≤ 5.

5.2.2 Grid Construction

When numerically evaluating integrals over atomic orbitals (AO), the choice of grid is

important. The atom-centered grids used here borrow their core concept from prior studies,

especially those involving integration of DFT functionals.234,248–252 The accepted route for

integrating the exchange-correlation energy is to build atomic grids as products of radial

and angular grids, then reweight these using Voronoi polyhedra centered about the nuclei.

The atom-centered grids are necessary to capture the spherical harmonics and radial decay

of atomic orbitals, while partitioning 3-dimensional space into polyhedra divides the grid

into volumes centered around each nucleus. The Voronoi boundaries are smoothed and

reweighted to avoid double counting of volume elements.249,250,252 This same framework is

used in SlaterGPU, though only a maximum of three atom-centered grids are required for

any given integral, since the ERIs only involve up to three centers at a time in the RI

approximation. In a polyatomic system, this greatly simplifies the form of the integration

grid, keeping each integral grid small enough to be efficiently evaluated. The grids chosen for

this implementation are the ”Log3” grid from Mura and Knowles252 for the radial component,

and the Lebedev grid253 for the angular component. Both grids are widely used in electronic

structure codes. Once each atom-centered grid is generated, and the Becke partitioning

scheme249 is applied, the 3-center integral (µν|P ) can be evaluated over the grid points x
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and grid weights w(x) as

(µν|P ) = NSTO
VC

NSTO
χµ

NSTO
χν

∑
x

V̄C(x)χ̄µ(x)χ̄ν(x)w(x), (5.13)

where V̄C , χ̄µ, χ̄ν are the Coulomb potential and basis functions with their respective

normalization constants, NSTO
VC

, NSTO
χµ

, and NSTO
χν

, factored out. While Lebedev and Mura-

Knowles grids are used with Becke weights, any quadrature grid and weighting scheme can

be used in Equation 5.13. The 2-index integrals (P |Q) are evaluated in a similar manner.

5.2.3 Implementation on GPU

All integral code in this chapter is written in C++ using OpenACC for GPU acceleration,

which has the advantage of being based on pragma directives allowing the same code base to

be compiled to run on CPUs or GPUs. When evaluating Equation 5.10, a modified version

from the Cephes library254 was used for the lower incomplete gamma function, noting that

OpenACC allows these implementations to be used directly. Most GPUs contain more single

precision compute units than double precision, so mixed precision operations are an attractive

choice in a practical implementation.255–258 For example, the 2080-Ti contains 1
32

the double

precision units compared to single precision units, while the GV100 contains 1
2

the double

precision units compared to single precision units. In SlaterGPU, mixed precision is available,

where evaluations over the grid are performed using single-precision arithmetic, and the final

summation occurs in double precision. In mixed precision, Equation 5.13 becomes

(µν|P )64 = NSTO
VC

NSTO
χµ

NSTO
χν

∑
x

V̄P (x)32χ̄µ(x)32χ̄ν(x)32w(x)32, (5.14)

where the subscript refers to the bits of precision of the quantity. Factorization of the

normalization constants reduces the number of floating point operations required, which

is essential for high performance. In addition to making use of the greater quantity of

single-precision compute units in GPUs, single precision also reduces storage and memory

bandwidth demands by a factor of 2. A generalization of the mixed precision procedure

would be to adaptively determine which integrals to evaluate at each level of precision, as

has been done in (analytic) GTO integration.258 This is not done here; instead, the accuracy

of the mixed precision approach is evaluated in comparison to double precision integration.
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Algorithm 5.1 GPU compute structure for generating 3-center ERIs

1: #pragma omp parallel for schedule(dynamic)
2: for A,B,C in Atom List //A,B over all Atoms, C ≥ B
3: Generate xA, xB, xC , w(xA), w(xB), w(xC)
4: x← xA ∪ xB ∪ xC
5: w(x)← w(xA) ∪ w(xB) ∪ w(xC)
6: for Pi in Aux(A)
7: Compute VPi

(x)
8: for χµj

in Basis(B)
9: Compute χµj

(x)
10: for χνk in Basis(C)
11: Compute χνk(x)
12: for Pi ∈ Aux(A), µj ∈ Basis(B), νk ∈ Basis(C)
13: (Pi|µjνk)←

∑
x VPi

(x)χµj
(x)χνk(x)w(x)

Aux(·) and Basis(·) denote the set of auxiliary and main basis functions centered at ·, respectively.

In the GPU computing framework, data transfers between CPU and GPU incur large

overhead penalties, and thus it is necessary to minimize these transactions for maximum

performance. As such, all quantities in Equation 5.14 are generated and evaluated directly

on GPU. The grid x and its weights w(x) only depend on the set of atoms and not the

basis functions, so these are generated once for each unique triad of atoms as described in

Algorithm 5.1. Additional computations may be avoided by evaluating each VP , χµ and χν

on the grid only once per triad of atoms. In other words, when evaluating (Pi|µjνk), the

quantities VP (x), χµ(x) and χν(x) are all computed and stored as GPU arrays for all Pi on

atom A, µj on atom B and νk on atom C to avoid duplicating computations. These arrays

can then be contracted all at once in a single tensor operation as indicated in lines 11-12 of

Algorithm 5.1. With OpenACC, the contraction on line 12 can be handled using a single

pragma directive containing the parallel and reduction clauses. Sample OpenACC code is

provided in Section D.8 of Appendix D. As the grid and weights are generated directly on

GPU, reuse of the grid benefits from the high memory bandwidth of the GPU (∼ 600 GB/s

on the 2080-Ti). Once the integrals are computed on GPU, a single data transfer step returns

the integrals to CPU memory. The code for numerically computing the STO integrals is

freely available on GitHub under an Apache 2.0 license with Commons Clause as noted in

the Data Availability Statement.

Multi-GPU parallelization is also implemented for a single node, using OpenMP to manage

the GPU processes. Each OpenMP thread is assigned a GPU, and a manager-worker scheme

is used for load balancing, where the work is partitioned using sets of atoms to take advantage

68



of grid/weight reuse. The parallelization occurs over the loop in Line 2 of Algorithm 5.1 and

can be accomplished with a single pragma directive, shown in Line 1.

5.2.4 Computational Details

An all-electron double-zeta STO basis set with polarization functions259 was used (denoted

DZP) as the primary atomic orbital basis. The auxiliary basis sets were taken from the

same source. Full specification for the primary and auxiliary basis sets are provided in

Section D.3 of Appendix D. Unless otherwise specified, the integration grid was a direct

product of 60 radial points and 770 angular points (Lebedev order 18). Hartree-Fock and

heat-bath configuration interaction40,43–45,134,162 (HCI) were used as representative electronic

structure methods. The HCI parameters used are detailed in the following section. For

GTOs, the 6-31G* basis with the RI-cc-pVTZ auxiliary basis was used. All GTO integral

evaluation was performed using the Libcint library.260 Molecules were placed in standard

nuclear orientations.261 The Nvidia HPC SDK 20.7 compiler suite with CUDA 11.0 was used

to compile all code. CPU code was run on Intel Xeon Gold 6242 processors clocked at 2.8

GHz and GPU code was executed using the Nvidia RTX 2080-Ti and GV-100 GPUs.

5.3 Results and Discussion

5.3.1 Performance Analysis

High throughput integral evaluation is necessary for any electronic structure theory code,

regardless of basis set type. Grid-based numerical integration, however, requires orders

of magnitude more floating point operations than analytical integration. To achieve the

integral performance required, GPUs are used in this study for numerical integration of STO

integrals. These integrals include all of the common 2-center integrals (overlap, electron-

nuclear attraction, and kinetic energy) as well as the 2- and 3-center Coulomb integrals needed

for the RI approximation. The relative speedup for numerical GPU integration compared

to CPU integration is visualized in Figure 5.2. In double precision, the 2080-Ti can achieve

over 30× speedup and the GV100 achieves ∼ 70× speedup, allowing for tractable wall times

for the integrals as listed in Table 5.1. Even further performance can be gained by utilizing

mixed precision, showing speedups of over 60× and overall integral throughput increasing

by a factor of ∼ 4 for the 2080-Ti (see Table 5.2). The speedup relative to CPU drops

slightly to ∼ 55× on the GV100. The performance behavior is a consequence of the hardware

configuration and the integral kernels being compute bound, with a detailed analysis provided

in Section D.5 of Appendix D.
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Figure 5.2: The GPU speedups for integral evaluation over CPU for the 2080-Ti (top) and
GV100 (bottom) are shown for various alkanes using the DZP basis from ADF. The speedups
are partitioned into the various integrals. Speedups for mixed (left) and double (right)
precision evaluations are also shown.

Table 5.1: Double-precision timing data (in seconds) for various alkanes. Each atom con-
tributes 46,200 grid points.

Basis size CPU Time 2080-Ti Time V100 Time

Molecule Main Aux Vne (P |Q) (µν|Q) Vne (P |Q) (µν|Q) Vne (P |Q) (µν|Q)

CH4 35 224 3.282 14.02 56.88 0.2483 0.4316 2.062 0.3583 0.1581 1.513

C3H8 85 516 40.28 67.98 786.2 2.452 1.835 28.00 2.991 0.6237 9.693

C5H12 135 808 166.1 163.5 3286 9.125 4.385 110.1 11.71 1.570 37.20

Table 5.2: Mixed-precision timing data (in seconds) for various alkanes. Each atom contributes
46,200 grid points.

Basis size CPU Time 2080-Ti Time V100 Time

Molecule Main Aux Vne (P |Q) (µν|Q) Vne (P |Q) (µν|Q) Vne (P |Q) (µν|Q)

CH4 35 224 2.095 8.686 34.34 0.2139 0.1076 0.4415 0.2708 0.1117 0.7867

C3H8 85 516 24.95 42.34 484.8 2.037 0.3838 6.029 2.795 0.4892 6.832

C5H12 135 808 95.62 98.58 1957 7.680 0.9275 24.12 10.58 1.109 26.21
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Faster integral evaluation is also possible by distributing the workload across multiple

GPUs. To test multi-GPU scaling, 3-center ERIs were evaluated for C9H20, which has 76.9

million ERIs, taking 125s to compute in mixed precision and 542s in double-precision. Figure

5.3 shows the strong scaling performance when evaluating the 3-center ERIs for C9H20,

which maintains parallel efficiency greater than 75% on up to 5 GPUs for mixed-precision

Figure 5.3: Multi-GPU speedups over single GPU and parallel efficiency for mixed (left) and
double (right) precision evaluation of the 3-center ERIs for C9H20. There are 76,873,200
3-center integrals. Perfect scaling is plotted as a solid black line. All GPUs are co-located on
a single compute node. Single GPU run times were 125s and 542s for mixed- and double-
precision implementations, respectively.

evaluation and greater than 90% for double-precision evaluations in this benchmark. Due

to the reduced computational demand of mixed-precision integration, the serial components

and communication overhead take up a proportionally larger amount of computational

time. Consequently, the parallel efficiency for mixed-precision integral evaluation drops off

more rapidly than for double precision in strong scaling tests. However, this parallelization

scheme still allows STO integration to achieve greater than 75% parallel efficiency and

overall integral throughput greater than 3 million integrals per second in mixed precision

on 5 GPUs. For comparision, Sun reported a throughput of approximately 6-8 million

explicitly calculated integrals per second per thread with Libcint,260 thus placing STO

integral throughput within reach of analytical integral evaluation for GTOs. While the

Libcint performance was reported for 4-center ERIs, the comparison demonstrates the

feasibility of Slater integration under the RI approximation. Additional developments in code

optimization262 and screening protocols256 may narrow this gap further. Other grid-based

STO integral evaluation implementations6,235–239 do not report timings nor do they use GPU

acceleration. The closest available performance comparison is an example where a 9-Gaussian
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Figure 5.4: The max and average errors between mixed- and double-precision integral
evaluation are plotted for various basis functions. All basis functions have ζ = 1 and m = 0.
The max and average errors are computed over internuclear distance scans based on the 16
all-positive directions of a Lebedev grid.

expansion was used to approximate STO integrals,228 which would reduce throughput, relative

to GTOs, by approximately a factor of 700 under the RI approximation.

The large performance gain (∼ 4× speedup) when using mixed precision on the 2080-Ti

units necessarily comes with some loss in accuracy compared to double precision arithmetic.

Therefore tests of the mixed-precision integral evaluation are needed, in order to gauge the

quantitative trade-off between accuracy and speed.

5.3.2 Mixed-Precision Evaluation

Numerical evaluation of integrals, whether done in single, double, or mixed precision,

will necessarily contain some residual error with any finite grid. While this is expected with

grid-based integration, estimates of the error and smoothness of the resulting integrals are

necessary to test the accuracy of the procedure. First, a selection of 2-center ERIs were

evaluated to determine the relative loss in precision when using the mixed-precision procedure.

For each (P |Q), the center Q was scanned radially away from center P in 16 directions

corresponding to all-positive vectors of an 86-point Lebedev grid. Figure 5.4 plots the max

and average absolute errors between mixed- and double-precision integrals at each distance.

This indicates that the error of individual integrals are similarly sized across various distances,

with the errors all being less than 8× 10−5.

The next measure of performance for mixed-precision integration is to evaluate the

smoothness of the integrals with respect to changes in nuclear position. Therefore 2-center
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Figure 5.5: The value of 2-center ERIs are evaluated in mixed precision. All basis functions
have ζ = 1 and the right basis is scanned radially away from the origin in various directions.
The directions selected are provided in the legend and were selected using the 16 all-positive
directions of an 86-point Lebedev grid. For all integrals shown here, m = 0. The legend
entries are direction unit vectors.

ERIs were evaluated in mixed precision as center Q is scanned radially for the same 16

directions as before. These yield qualitatively smooth plots, as seen in Figure 5.5. Additional

plots for other basis set pairings are provided in Section D.6 of Appendix D and show the

same qualitative behavior as this figure.

5.3.3 Hartree-Fock and HCI

Two levels of wave function-based electronic structure theory were selected to provide

practical tests for the Slater GPU integrals. First, the Hartree-Fock energies for a set of

benchmark molecules were computed and these are listed in Table 5.3 (see Table D.2 of

Appendix D for timing information). The DZP basis set, corresponding auxiliary basis

sets, and grid described in the Computational Details were used for these tests. Energies

using the 6-31G* and RI-cc-pVTZ auxiliary GTO basis sets are also reported, to provide

a baseline for comparison. The HF results for alkanes (CnH2n+ 2) show a slight increase

in the mixed-precision error as the chain length increases. This is shown in Figure 5.6,

which depicts the relative error of the HF energy when using mixed- and double-precision

at various grid sizes. The roughly constant relative error as system size grows suggests

that the mixed-precision error is size extensive. Combined with Figures 5.4 and 5.5, Figure
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5.6 indicates that errors due to using mixed-precision integrals may largely result in error

cancellation.

Table 5.3: HF energies computed for several small molecules are listed. The STO basis sets
and grids are described in the Computational Details. The numbers in parenthesis in the
header denotes the bits of precision used for integral evaluation.

Molecule DZP (32) DZP (64) 6-31G*
CH4 -40.199728 -40.199730 -40.194806
C2H6 -79.232585 -79.232593 -79.227194
C3H8 -118.269381 -118.269391 -118.261168
C4H10 -157.305952 -157.305972 -157.294705
C5H12 -196.342295 -196.342322 -196.328158
BH3 -26.395615 -26.395617 -26.390665
BF3 -323.166750 -323.166775 -323.142633
CF4 -435.667561 -435.667608 -435.642948

Cr(CO)6 -1714.832816 -1714.832901 -1714.469310

Figure 5.6: Heatmaps of the relative error of HF energies when using mixed- vs double-
precision integral evaluation are shown for various alkanes using different angular and radial
grid sizes.

The small error margins for STO integrals—as measured at the HF level of theory—suggest

that thermochemical properties can be precisely evaluated. To test this hypothesis, an SN2

reaction involving fluoride exchange in fluoromethane was evaluated (Figure 5.7). Since the

HF level of theory is not expected to be quantitative, activation energies were computed not

only with HF, but also with the heat-bath configuration interaction (HCI) method, with ε1

set to 1.0 mHa and ε2 set to 1.0 µHa. HCI provides a close approximation to full CI, and

importantly, is tractable for the 20e− in 60 orbital system of interest here. The activation

energies of the exchange reaction using various grids are reported in Table 5.4. At the grids

considered, the change in activation energy at the HF level is negligible between mixed and
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Figure 5.7: The SN2 reaction for fluoride exchange of fluoromethane.

double precision as well as between grid sizes. At the HCI level, more integrals contribute

to the total energy. Consequently, the variation in the activation energy is larger for HCI

relative to HF. However, the range of activation barriers for HCI is still less than half a kcal

mol−1.

Table 5.4: HF and HCI activation energies (kcal mol−1) of CH3F fluoride exchange at various
grid sizes using single- and double-precision integral evaluations. The number of radial points
and Lebedev order are provided for the radial and angular grids. The size of the angular grid
is given in parenthesis next to the Lebedev order.

Double Precision Mixed Precision
HF

Radial
Angular

17(590) 18(770) 19(974) 17(590) 18(770) 19(974)

50 18.4 18.4 18.4 18.4 18.4 18.4
60 18.4 18.4 18.4 18.4 18.4 18.4

HCI
50 13.7 13.6 13.8 13.6 13.8 13.7
60 13.9 13.8 13.7 13.8 13.6 13.6

Another test using the HCI method was the calculation of the singlet-triplet gaps of

cyclobutadiene at its D2h and D4h geometries using a triple-ζ polarized (denoted TZP) basis

set. Cyclobutadiene has a multireference singlet ground state, due to its degenerate π orbitals

in the D4h geometry. The results, for HCI parameters of ε1 = 1.0 mHa and ε2 = 0.1 µHa,

are given in Table 5.5. These demonstrate mixed-precision errors of less than 0.1 kcal mol−1.

Furthermore, the singlet-triplet gap at the D4h is consistent with prior full-CI using GTOs.79

Table 5.5: Relative energies of cyclobutadiene at D2h and D4h geometries (kcal mol−1).

Double Precision Mixed Precision
D2h D4h D2h D4h

Singlet 0.0 9.4 0.0 9.3
Triplet 36.2 14.2 36.2 14.2

Gap 36.2 4.8 36.2 4.9

One final test will further show the utility of the Slater GPU integrals in quantum

chemistry. Specifically, the geometric gradients—which are essential in studying chemical

reactions—were evaluated using analytical nuclear derivatives of the quantities VP , µ, and ν in

Equation 5.13. As a benchmark, the fully symmetric BF3, BH3, CF4, and CH4 molecules were
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Figure 5.8: The Hartree-Fock geometric gradient projections (solid blue lines) of molecules
with D3h and Td point groups are plotted as the A-X bond distance is scanned, where A=B,C
and X=H,F. Gradients were computed in mixed precision. The mixed-precision (solid green)
and double-precision (dotted red) Hartree-Fock energies at each point are also plotted. For
CF4, the auxiliary basis for fluorine is extended with additional 2p, 3d, 4f and 5g functions.

symmetrically stretched. The HF energies as well as the projection of the mixed-precision HF

geometric gradient onto each A-X bond (A=B,C;X=H,F) are plotted in Figure 5.8. As before,

the mixed- and double-precision energies overlap with one another. As for the gradient, the

magnitude along each A-X bond should be identical for all distances. This is largely achieved

in these test cases, however, there is some variation when fluorine is present. For CF4, using

the ADF fitting basis led to large gradient errors, thus the auxiliary basis of fluorine was

extended with additional functions (see Section D.3 of Appendix D for additional details).

Since this addition resulted in substantially improved gradients, the remaining variations for

BF3 and CF4 are attributed to an incomplete RI auxiliary basis. While this work has not

examined the choice of RI basis in detail, this subject will need to be revisited in a future

study.

5.4 Conclusions

The SlaterGPU integral code is herein shown capable of evaluating the full complement of

ERIs needed for HF and post-HF theories. Modern computer architectures combined with the

RI approximation have allowed STO integrals to be feasible even though analytic expressions

are currently unavailable. The use of mixed-precision integration allows further performance

gains—achieving speedups greater than 80× for the ERIs—with minimal loss to accuracy. In
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the future, computing select integrals in double precision may mitigate errors due to using

mixed-precision integrals. The combination of GPU acceleration, multi-GPU parallelization,

and mixed-precision integration make SlaterGPU competitive with single-threaded GTO

integration with the possibility of tuning SlaterGPU for additional performance.

The current implementation and basis sets are adequate for performing correlated electronic

structure computations at the full CI level, however room for improvement remains in the

STO RI gradients, where the available auxiliary basis sets appear to be inadequate. Further

development of auxiliary basis sets will be required before STO integrals are generally useful

for gradient computations.

77



CHAPTER 6

Final Remarks

6.1 Conclusions

In quantum chemistry, the goal is to compute accurate wave functions with as little

computational resource as possible. These criteria are at odds and must be balanced. We

played with this balance throughout this thesis.

In Chapter 2, we were able to computationally characterize an open-shell (and strongly

correlated) coronoid system using the spin-flip restricted active space configuration interaction

(RAS-SF) method. The coronoid possessed highly multiconfigurational character with multiple

low-lying spin states. Additional analysis of the RAS-SF results using a spin Hamiltonian

also determined that the system featured predominantly antiferromagnetic coupling between

the radical site pairs. Due to the localization of electron correlation to primarily six radical

sites, the RAS-SF method is highly suitable for the 8′ molecule. However, RAS-SF is still

limited in active space size and the amount of electron correlation it can recover.

Chapter 3 introduced computational advances to the heat-bath configuration interaction

(HCI) method, thus extending the size of active space that can be treated accurately.

Conventional CI methods can handle around 18 electrons. With the advances in HCI,

extrapolations to the full configuration interaction (FCI) solutions can be achieved for active

spaces containing around of 20 to 30 electrons, which would be limit calculations to small

complexes such as dimers of transition metals or small organic molecules containing up to

5 heavy atoms when the full set of valence electrons is required. In our case, we were able

to explicitly correlate and extrapolate to FCI an active space of (22e,168o) by reducing

the full Fock space containing ∼ 1033 Slater Determinants to only ∼ 107 determinants.

However, the calculation required over 4000 CPU cores on a super computer, and HCI is

still an exponentially scaling method, thus remains beyond the reach of the typical quantum

chemistry user.

We introduced improvements to the method of increments as applied to the complete active

space self-consistent field (iCASSCF) method in Chapter 4 making iCASSCF variational.
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The iCASSCF method approximates CASSCF, which performs FCI within the active space.

The use of the incremental expansion produced a highly accurate, polynomially scaling

approximation to CASSCF enabling treatment of large active spaces containing over 80

electrons, corresponding to medium-sized organic molecules with up to ∼20 heavy atoms, or

small transition metal complexes. Using iCASSCF, we were able to treat a (84e,84o) active

space, which has a Fock space containing ∼ 1048 Slater determinants. The iCASSCF method

took 8 days for a single-point calculation in the (84e,84o) active space on 12 CPU cores.

This wall/CPU time pushes the limits of what might be considered reasonable for a standard

quantum chemistry user.

The previously mentioned chapters focused on the ability of configuration interaction

(CI) methods to recover electron correlation. However, Chapter 5 addresses the accuracy

of the wave function at the basis set level. While Slater-type orbitals (STOs) are able to

better represent electron density than Gaussian-type orbitals (GTOs), the difficulty of solving

their electron integrals has historically hindered their adoption, especially in correlated wave

function methods. With the development of the SlaterGPU package, the gap between GTO-

and STO-integral evaluation is narrowed by utilizing the hardware capabilities of graphics

processing units (GPUs).

6.2 Future Directions

There are several natural approaches one can take to enhance the capabilities of the

methods developed throughout this thesis. We discuss these approaches below.

In HCI, a simple variation of the FNV hash is used which means perturbative determinants

are hashed after they are generated. The development of a hash which is informed by

the underlying structure of the CI problem could dramatically improve both the overall

performance and the parallel efficiency of the algorithm.

For the method of increments, high accuracy has been established for complexes containing

on the order of 80 to 120 electrons at the 4-body—significantly out of reach to other correlated

methods including HCI. However, at a fixed expansion order, the errors of many-body

expansion methods are known to be size extensive, i.e. they scale with system size. Thus,

for active spaces with significantly more electrons—on the order of hundreds of electrons or

more—one needs to first establish the appropriate truncation order. In addition, CASSCF

is often used to study photochemical processes. For iCASSCF to be generally useful in

photochemistry, the excited state theory still needs to be developed.

To achieve higher accuracy in STO integration (or any numerical integration generally),

one simply increases the fineness of the grid. In SlaterGPU, a direct-product grid is used
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meaning one can only increase the size of the angular and radial grids, which increases the

number of points across the entire 3D grid. Another approach would be to utilize adaptive

grids where the grid resolution is only increased for volume components that significantly

affect the accuracy of integration.

Finally, quantum chemistry is most practically applied to provide insights to experimental

data. Most molecular experiments are performed in solution phase, however the methods

presented in this thesis are gas phase methods. Additionally, relativistic effects can play an

important role in the energetics of many reactions, especially where transition metal catalysts

are used. Thus, the incorporation of solvation and relativistic effects into the HCI and

iCASSCF implementations are necessary to more accurately model experimental conditions.

6.3 Outlooks in Quantum Chemistry

Continued developments in quantum chemistry—both from computational and theoretical

perspectives—will be needed to extend its reach to increasingly larger systems and to improve

the accuracy of its methods. On the computational side, we must tailor our software to

leverage the advances in computer hardware. For example, the majority of the compute

capability enabled by the latest and upcoming exascale supercomputers come from accelerators

as opposed to raw CPU horsepower. To some extent, this effort has been ongoing in the

quantum chemistry community, including in this thesis with the introduction of SlaterGPU.

These computational improvements will be necessary to address increasingly larger and more

difficult problems.

On the theoretical side, the challenge remains to develop methods that can provide

systematic approximations to FCI with favorable scaling characteristics that can run without

highly specialized infrastructure. Methods like HCI scale exponentially, which will likely

preclude their widespread adoption as standalone methods. However, with computational

advances, they can act as the underlying engine in fragmented methods like iFCI or iCASSCF

and can also provide valuable benchmark data for the development of other methods, such

as density functional theory (DFT) or those based in machine learning. Finally, the further

development of STO integration libraries and the STO basis sets themselves will be needed

to truly solve many quantum chemistry problems. Artefacts from using an improper—i.e.

Gaussian—basis, for example, has long misguided developers of density functionals.

In summary, future electronic structure theorists will need to be well-versed in computation

and theory, and be familiar with contemporary computer hardware. By combining expertise

in all three, one can design future methods where the computational cost required for more

accuracy need not be so expensive.

80



APPENDIX A

Supporting Information for Chapter 2

The natural orbitals for the singlet (18′), triplet (38′), quintet (58′), and septet (78′)

optimized geometries are shown in the figures that follow.

81



Figure A.1: Natural orbitals for the RAS(6,6)-SF/cc-pVDZ ground state (S0) at
CASSCF(6,6)/cc-pVDZ geometries optimized for the singlet (18′), triplet (38′), quintet
(58′), and septet (78′) configurations.
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Figure A.2: Natural orbitals for the RAS(6,6)-SF/cc-pVDZ ground state (T1) at
CASSCF(6,6)/cc-pVDZ geometries optimized for the singlet (18′), triplet (38′), quintet
(58′), and septet (78′) configurations.
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Figure A.3: Natural orbitals for the RAS(6,6)-SF/cc-pVDZ ground state (T2) at
CASSCF(6,6)/cc-pVDZ geometries optimized for the singlet (18′), triplet (38′), quintet
(58′), and septet (78′) configurations.
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Figure A.4: Natural orbitals for the RAS(6,6)-SF/cc-pVDZ ground state (T3) at
CASSCF(6,6)/cc-pVDZ geometries optimized for the singlet (18′), triplet (38′), quintet
(58′), and septet (78′) configurations.
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Figure A.5: Natural orbitals for the RAS(6,6)-SF/cc-pVDZ ground state (Qn1) at
CASSCF(6,6)/cc-pVDZ geometries optimized for the singlet (18′), triplet (38′), quintet
(58′), and septet (78′) configurations.
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Figure A.6: Natural orbitals for the RAS(6,6)-SF/cc-pVDZ ground state (Qn2) at
CASSCF(6,6)/cc-pVDZ geometries optimized for the singlet (18′), triplet (38′), quintet
(58′), and septet (78′) configurations.

87



Figure A.7: Natural orbitals for the RAS(6,6)-SF/cc-pVDZ ground state (Sp1) at
CASSCF(6,6)/cc-pVDZ geometries optimized for the singlet (18′), triplet (38′), quintet
(58′), and septet (78′) configurations.
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Figure A.8: Natural orbitals for the RAS(6,6)-SF/cc-pVDZ ground state (S1) at
CASSCF(6,6)/cc-pVDZ geometries optimized for the singlet (18′), triplet (38′), quintet
(58′), and septet (78′) configurations.

89



APPENDIX B

Supporting Information for Chapter 3

B.1 Butadiene Geometry

Geometry for Scaling Studies

C -3.11156756 0.23231420 0.0

H -2.57840381 -0.69539072 0.0

H -4.18156756 0.23231420 0.0

C -2.43629325 1.40729149 0.0

H -2.96945700 2.33499641 0.0

C -0.89629325 1.40729149 0.0

H -0.36312950 0.47958657 0.0

C -0.21404985 2.57823598 0.0

H -0.74169232 3.50909226 0.0

H 0.85593126 2.57187868 0.0

B.2 Butadiene Energies

The HCI energies for the butadiene accuracy benchmark are listed in Table B.1. The

geometry for the accuracy benchmark is taken from Daday et al.143 Figure B.1 shows a

5-point extrapolation which results in a total energy of −155.55720 Ha. Table B.2 compares

5-point and 4-point extrapolated energies from this work to prior studies. The extrapolated

energies are in agreement with DMRG results152 within 3× 10−4 Ha.
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Table B.1: Energy benchmarks for butadiene in the ANO-L-VDZP basis set. The perturbative
cutoff is ε2 = 10−8 Ha for HCI.

ε1 Energy (var) Energy (total)

2.5× 10−4 -155.46483 -155.54458

2.0× 10−4 -155.46921 -155.54515

1.5× 10−4 -155.47498 -155.54597

1.0× 10−4 -155.48335 -155.54710

5.0× 10−5 -155.50018 -155.54947

5-point extrapolation -155.55739

4-point extrapolation -155.55744

Figure B.1: 5-point HCI extrapolation to the FCI energy of butadiene in the ANO-L-VDZP
basis. Energies were computed with ε1 of 2.5× 10−4, 2.0× 10−4, 1.5× 10−4, 1.0× 10−4, and
5.0× 10−5 with ε2 = 1.0× 10−8. The extrapolated energy and associated R2 are listed in the
legend.

Method Energy (Ha)

i-FCIQMC143 -155.54914

DMRG152 -155.55718

SHCI (extrapolated)43 -155.55821

HCI (5-point extrapolation) -155.55739

HCI (4-point extrapolation) -155.55744

Table B.2: Butadiene energy benchmarks in the ANO-L-VDZP basis set.
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Figure B.2: The localized occupied and singly-occupied ROHF orbitals for the triplet state
of [FeO(NH3)5]

2+ included in the active space are depicted. Isosurface value of 0.1 a.u. is
used for all figures.

B.3 [FeO(NH3)5]
2+ Orbitals

Figure B.2 shows the Pipek-Mezey localized occupied and singly-occupied which were

included in the HCI active space. Similar orbitals for the quintet state were used. The

localized orbitals were taken from ROHF references.

B.4 Hash Functions

A hash function is a function that takes an arbitrary input and maps it to an unsigned

integer. The FNV hash137 can be written in C++ as shown in Algorithm B.1. The FNV

hash loops over len bytes performing XOR (^) and integer multiplication. In the HCI

implementation, the FNV hash is modified to Algorithm B.2. Rather than looping over

every byte, the loop is over every 8 bytes. Since size t is 8 bytes wide, a stride of 8 bytes

still captures information from every bit in the XOR operation and also reduces operation

count in the hash. Furthermore, Algorithm B.2 hashes a fixed size bit-string with MAXORBS

bits, which is set to 192 in the current study. Using a fixed size bit-string allows Algorithm

B.2 to utilize the ”unroll-loops” optimization printed in line 1 of Algorithm B.2. Algorithm

B.2 also has right bit-shift of 37 bits in order to capture more significant bits from the last

multiplication operation in the loop. The bit-shift does not practically affect the number of
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ability to distribute determinants especially since determinants are binned according to both

α- and β-string hashes. The timings of these hash functions are discussed next.

Table B.3: Time to hash 5.6× 108 α-strings of length 192 with 11 set bits.

Hash function Total time (s) Avg Time per hash (ns)
std::hash 4.46 7.87

Algorithm B.1 13.3 23.5
Algorithm B.2 1.88 3.32
Algorithm B.2

2.08 3.67
without loop unroll

Algorithm B.1 C++ code for FNV hash.

1 size_t Fnv_hash(const void* ptr , int len) {

2 size_t hash = 0xcbf29ce484222325;

3 const char* cptr = static_cast <const size_t*>(ptr);

4

5 for (;len;--len) {

6 hash ^= static_cast <size_t >(* cptr ++);

7 hash *= static_cast <size_t >(0 x00000100000001B3);

8 }

9 return hash;

10 }

Table B.3 lists the timings for std::hash from the C++ STL, Algorithm B.1, Algorithm

B.2, and Algorithm B.2 without the ”unroll-loops” optimization. The compiler used in these

timing tests was GCC 12 with the -O2 flag enabled, which does not automatically include

loop unrolling in its optimizations. By using a stride of 8 bytes, Algorithm B.2 is about 7x

faster than Algorithm B.1 and more than twice as fast as std::hash. It can also be seen

that without loop unrolling, the time per hash increases by approximately 10%, which has

significant impact on the performance of the perturbative step of the HCI implementation.

Furthermore, Algorithm B.2 distributes determinants in a consistent manner across the

hash. Taking the HCI calculation of the [FeO(NH3)5]
2+ quintet state with ε1 = 1× 10−4 Ha

as an example, there would be the 8.95×1010 perturbative determinants. These determinants

were distributed across 144 MPI processes (4 MPI processes per node on 36 nodes). Each MPI

process had an average of 6.2×108 determinants with standard deviation 8.6×106 determinants

and a range of 3.7× 107 determinants. This corresponds to a standard deviation and range

of only 1.3% and 5.9% of the average, which leads to consistent memory requirements for

each MPI process.
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Algorithm B.2 C++ code for hash function used in HCI implementation

1 __attribute__ (( optimize("unroll -loops")))

2 short Hash_bytes(const void* ptr)

3 {

4 size_t hash = 0x01000193;

5 const size_t* cptr = static_cast <const size_t*>(ptr);

6 int len = MAXORBS / 64;

7

8 for (;len;--len)

9 {

10 hash ^= static_cast <size_t >(* cptr ++);

11 hash *= static_cast <size_t >(2870177450012600261 ULL);

12 }

13 hash = hash >> 37;

14 return hash;

15 }
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APPENDIX C

Supporting Information for Chapter 4

C.1 oxoMn(salen)Cl

Dual socket Intel Xeon E5-2683 v3 CPUs were used for the iCASSCF computations of

this work. Using 12 cores on these CPUs, the integral evaluation as well as generation and

computation of the increments took 0.46 hours (1653 s) of total wall time for iCASSCF(n = 3).

Subsequent orbital optimization at n = 3 required a total wall time of approximately 8 days

3 hours (701571 s). For n = 4, the resulting orbitals at n = 3 were used and the subsequent

orbital optimization required 20.1 hours (72310 s).

C.2 Parallelity

The error between conventional CASSCF and the method of increments is computed for

the PES of ethane dissociation (see Figure C.1). The conventional CASSCF computed bond

dissociation energy is 0.1653 Ha (103.7 kcal mol−1). The non-parallelity error (NPE) for

iCASSCF(n = 4), iCAS-CI(n = 4), and the previous implementation of iCASSCF(n = 4) are

2.15 mHa, 0.23 mHa, and 0.14 mHa, respectively. Single excitations are required for precisely

describing bond dissociation, hence the (relatively) large error in in the singles-free iCASSCF

implementation. However, as with other examples, the missing correlation is recovered when

using iCAS-CI.
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Figure C.1: Differences between canonical CASSCF, iCASSCF(n = 4), iCAS-CI(n = 4) and
the original implementation of iCASSCF(n = 4) are shown for ethane dissociation. The NPE
for iCASSCF, iCAS-CI, and the original iCASSCF are 2.15 mHa, 0.23 mHa, and 0.14 mHa,
respectively.
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C.3 Additional Data

Figure C.2: Small molecule benchmark results including results from previous studies.
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Table C.1: Small molecule benchmark geometries and energies from iCASSCF and iCAS-CI
using 6-31G* basis set. Conventional CASSCF from Molpro. iCAS-CI(n = k) energies use
iCASSCF(n = k) geometries and orbitals. Bond distances, angles, and energies given in Å,
degrees, and Hartrees, respectively.
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Figure C.3: Select iCAS-CI(n=3) natural orbitals for the singlet state of oxo-Mn(salen)Cl
are shown. HONO and LUNO are boxed.

Figure C.4: Select iCAS-CI(n=3) natural orbitals for the triplet state of oxo-Mn(salen)Cl are
shown. SONOs are boxed.
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Table C.2: Coordinates for the optimized ωB97XD/6-31G* geometry of oxo-Mn(salen)Cl.

1 Mn 0.00426853 0.01193109 0.00516565

2 O -1.07904774 1.02407160 -1.29257396

3 O -0.38568147 -1.57420571 -1.08201933

4 N 0.73795289 1.58032839 0.78132122

5 N 1.31212351 -0.88100686 1.04879369

6 C -1.26610124 2.26797128 -1.24074706

7 C -0.65407825 3.18037381 -0.37324817

8 C 0.34200739 2.81019719 0.52148226

9 C 0.22132065 -2.67532723 -0.98288661

10 C 1.23549686 -3.01016466 -0.08096144

11 C 1.71367906 -2.12181813 0.87688968

12 C 1.96257143 1.35466613 1.54148960

13 C 1.85745984 -0.04961373 2.11342121

14 H 0.86149270 3.60566714 1.05998860

15 H 2.49343703 -2.47401977 1.55504499

16 H 2.81286294 1.41062034 0.85157883

17 H 1.15975852 -0.05809563 2.96170481

18 H 2.08238684 2.10907682 2.32756115

19 H 2.82951715 -0.42140951 2.45358312

20 H -1.97877721 2.65753526 -1.97620543

21 H -0.09971460 -3.44024001 -1.69785436

22 Cl 1.67965883 0.29802390 -1.66949117

23 O -1.23699337 -0.22205126 0.84999273

24 H -0.91766654 4.22747250 -0.45342641

25 H 1.65965399 -4.00483737 -0.12510851

Table C.3: Coordinates for the optimized iCASSCF(n=3)/6-31+G** geometry of the cy-
clobutadiene reactant.

1 C 1.829129 0.415737 -0.396948

2 C 3.415272 0.396100 -0.355189

3 C 3.427557 1.747942 -0.164081

4 C 1.839964 1.767412 -0.205660

5 H 1.056274 -0.347902 -0.525581

6 H 4.186968 -0.374687 -0.442217

7 H 4.201979 2.509792 -0.034599

8 H 1.070108 2.539996 -0.118645
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Table C.4: Coordinates for the iCASSCF(n=3)/6-31+G** geometry of the cyclobutadiene
TS found from GSM

1 C 1.941501 0.347782 -0.374239

2 C 3.408507 0.336234 -0.349552

3 C 3.416179 1.788872 -0.143371

4 C 1.949197 1.799616 -0.164995

5 H 1.164623 -0.412608 -0.489600

6 H 4.174132 -0.440912 -0.416305

7 H 4.191111 2.542146 0.019179

8 H 1.182472 2.574430 -0.084291

Table C.5: Coordinates for the D4h-symmetrized cyclobutadiene TS.

1 C 1.941501 0.347782 -0.374239

2 C 3.416199 1.789067 -0.143343

3 C 3.408502 0.336892 -0.352636

4 C 1.949199 1.799957 -0.164946

5 H 1.164683 -0.411435 -0.495867

6 H 4.177209 -0.433798 -0.451504

7 H 4.193017 2.548284 -0.021715

8 H 1.180491 2.570647 -0.066078

Table C.6: Conventional CASSCF coordinates for optimized methanol geometry.

1 C -0.0327780667 0.6630756802 0.0000000020

2 O -0.0711064172 -0.7657519727 0.0000000079

3 H -1.0810849290 1.0086056226 -0.0000000042

4 H 0.4716079663 1.0726542296 0.9016920551

5 H 0.4716079686 1.0726542246 -0.9016920517

6 H 0.8448534780 -1.0838377843 -0.0000000091

Table C.7: Conventional CASSCF coordinates for optimized hydrogen peroxide geometry.

1 O 0.0227950330 0.7312580176 -0.0636550734

2 O -0.0227950330 -0.7312580176 -0.0636550734

3 H 0.8503508636 0.8685890402 0.4328550734

4 H -0.8503508636 -0.8685890402 0.4328550734
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APPENDIX D

Supporting Information for Chapter 5

D.1 One-electron integrals

The one electron integrals are of the form

Oµν = ⟨χµ|Ô1|χν⟩ =

∫
χµ(r)Ô(r)χν(r)dr, (D.1)

where operators of interest are the overlap (Ô = 1), kinetic energy (Ô = 1
2
∇2), and nuclear

attraction (Ô = ZA

R1A
) operators. For a set of grid points x and grid weights w(x), the integral

in Equation D.1 can be evaluated by

Oµν = NχµNχν

∑
x

χ̄µ(x)Ô(χ̄ν(x))w(x), (D.2)

where χ̄λ is the basis function with normalization constant Nχλ
factored out.

D.2 Radial component of the Slater Coulomb Potential

The radial component of the Slater Coulomb potential has the form4

Inl(r) = r−l−1

∫ r

0

(r′)n+l+1e−ζr′dr′ + rl
∫ ∞

r

(r′)n−le−ζr′dr′, (D.3)

which has analytic forms for each n, l of interest in quantum chemistry. The expressions for

Inl up to n = 3 are listed below. As n, l increase, the expression demonstrates numerical

instability resulting in non-smooth STO integration, as discussed in Chapter 5.
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I1,0(r) =

(
−ζr + 2eζr − 2

)
e−ζr

ζ3r

I2,0(r) =

(
−ζ2r2 − 4ζr + 6eζr − 6

)
e−ζr

ζ4r

I2,1(r) =
3
(
−ζ3r3 − 4ζ2r2 − 8ζr + 8eζr − 8

)
e−ζr

ζ5r2

I3,0(r) =
(−ζ3r3 − 6ζ2r2 − 18ζr + 24eζr − 24)e−ζr

ζ5r

I3,1(r) =
3
(
−ζ4r4 − 6ζ3r3 − 20ζ2r2 − 40ζr + 40eζr − 40

)
e−ζr

ζ6r2

I3,2(r) =
5
(
−ζ5r5 − 6ζ4r4 − 24ζ3r3 − 72ζ2r2 − 144ζr + 144eζr − 144

)
e−ζr

ζ7r3

D.3 Basis set specifications

The STO subshell and exponent are listed for the main and auxiliary basis for each atom

considered in the main paper. Basis sets are modified versions of those provided in the ADF

package259.

D.3.1 DZP basis set specifications

H basis specification

Main basis Auxiliary basis

1s 0.76 1s 3.16 2s 1.50 2p 1.75

1s 1.28 1s 2.09 2p 4.00 3d 4.00

2p 1.25 1s 1.38 2p 2.65 3d 2.50

4f 3.00 5g 4.00

B basis specification

Main basis Auxiliary basis

1s 6.50 1s 13.00 3s 2.56 3p 1.68

1s 4.08 2s 14.79 3s 1.87 3d 6.08

2s 1.00 2s 10.16 3s 1.36 3d 3.69

2s 1.56 2s 6.98 2p 9.10 3d 2.24

2p 1.70 2s 4.80 2p 5.17 3d 1.36

2p 0.76 3s 4.83 3p 4.36 4f 5.00
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3d 1.50 3s 3.52 3p 2.71 4f 3.50

5g 4.50 5g 5.50

C basis specification

Main basis Auxiliary basis

1s 7.68 1s 15.36 3s 3.08 3p 2.06

1s 5.00 2s 17.53 3s 2.25 3d 7.20

2s 1.98 2s 12.07 3s 1.64 3d 4.40

2s 1.24 2s 8.31 2p 9.88 3d 2.69

2p 2.20 2s 5.73 2p 5.80 3d 1.64

2p 0.96 3s 5.78 3p 5.05 4f 5.40

3d 2.20 3s 4.22 3p 3.23 4f 3.55

5g 4.50

O basis specification

Main basis Auxiliary basis

1s 9.80 1s 19.60 3s 4.15 3p 2.84

1s 6.80 2s 22.60 3s 3.05 3d 8.80

2s 1.70 2s 15.68 3s 2.24 3d 5.58

2s 2.82 2s 10.89 2p 12.86 3d 3.53

2p 3.06 2s 7.56 2p 7.68 3d 2.24

2p 1.30 3s 7.69 3p 6.78 4f 6.20

3d 2.00 3s 5.65 3p 4.39 4f 3.70

5g 4.50

F basis specification

Main basis Auxiliary basis

1s 10.88 1s 21.76 3s 3.95 3p 3.42

1s 7.70 2s 24.39 3s 2.85 3d 9.70

2s 3.22 2s 16.56 3s 2.05 3d 6.16

2s 1.92 2s 11.24 2p 1.48 3d 3.91

2p 3.52 2s 7.63 2p 14.40 3d 2.48

2p 1.48 3s 7.60 3p 7.53 4f 6.50

3d 2.00 3s 5.48 3p 5.90 4f 3.75

5g 4.50
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Additional Functions in extended Auxiliary Basis

2P 4.76 3D 0.62

2P 2.64 3D 18.71

2P 1.26 4F 2.97

2P 0.65 4F 1.44

3D 18.71 5G 3.12

3D 1.52

Cr basis specification

Main basis Auxiliary basis

1S 27.25 1S 54.50 7S 2.68 6D 3.62

1S 21.70 2S 60.57 7S 2.13 7D 2.60

2S 9.20 2S 40.83 7S 1.70 4F 15.60

2S 6.05 3S 40.40 2P 40.45 5F 8.92

2P 13.20 3S 28.95 3P 27.34 5F 4.30

2P 8.25 4S 27.44 4P 18.68 6F 2.54

3S 5.25 4S 20.46 5P 12.96 5G 9.75

3S 3.30 4S 15.25 5P 7.53 5G 5.17

3P 4.65 5S 14.16 6P 5.30 5G 2.74

3P 2.80 5S 10.86 6P 3.22

3D 5.70 5S 8.33 7P 2.30

3D 2.70 6S 7.65 3D 29.95

3D 1.24 6S 6.00 4D 20.59

4S 1.75 6S 4.70 5D 14.37

4S 1.00 6S 3.68 5D 8.39

4P 1.30 7S 3.36 6D 5.94

D.3.2 TZ2P basis set specifications

Li basis specification

Main basis Auxiliary basis

1s 4.24 2p 0.60 1s 8.48 3p 0.92

1s 2.26 2p 1.20 1s 5.43 3d 4.72

2s 2.36 3d 1.20 2p 6.60 3d 2.08

2s 0.68 4f 1.80 2p 2.98 3d 0.92
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2s 0.46 2p 1.34 4f 5.00

4f 3.50 5g 3.50

F basis specification

Main basis Auxiliary basis

1s 10.88 2p 4.54 1s 21.76 3s 2.85

1s 7.70 2p 2.30 2s 24.39 3s 2.05

2s 3.24 2p 1.24 2s 16.56 3s 1.48

2s 1.94 3d 2.00 2s 11.24 2p 14.40

2s 0.74 4f 3.00 2s 7.63 2p 7.53

3s 7.60 3p 5.90

3s 5.48 3p 3.42

3s 3.95 3p 1.98

3d 9.70 3d 6.15

3d 3.91 3d 2.48

4f 6.50 4f 3.75

5g 4.50

D.3.3 TZP basis set specifications

For the following TZP basis sets, the same auxiliary basis was used as specified in the

DZP basis.

C basis specification

1S 7.68

1S 5.00

2S 1.28

2S 2.10

2S 4.60

2P 0.82

2P 1.48

2P 2.94

3D 2.20

H basis specification
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1S 0.69

1S 0.92

1S 1.58

2P 1.25

D.4 Geometries

CH4

C -0.00000 0.00000 0.00000

H 0.35665 -1.00881 0.00000

H 0.35667 0.50440 0.87365

H 0.35667 0.50440 -0.87365

H -1.07000 0.00001 0.00000

C2H6

C -0.25667 -0.36298 -0.62870

H 0.09998 -1.37179 -0.62870

H 0.10000 0.14142 -1.50235

H -1.32667 -0.36296 -0.62870

C 0.25667 0.36298 0.62870

H -0.09839 1.37235 0.62772

H -0.10160 -0.14029 1.50235

H 1.32667 0.36127 0.62968

C3H8

C -0.16408 -0.97376 -0.82820

H 0.19257 -1.98257 -0.82820

H 0.19259 -0.46936 -1.70185

H -1.23408 -0.97375 -0.82820

C 0.34926 -0.24780 0.42920

H -0.00901 -0.75107 1.30285

H 1.41926 -0.24951 0.43018

C -0.16175 1.20494 0.42779

H -1.23175 1.20665 0.42644
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H 0.19461 1.70923 1.30163

H 0.19682 1.70831 -0.44567

BH3: B-H bond length 1.18000 Å

BF3: B-F bond length 1.46000 Å

CF4: C-F bond length 1.35000 Å

C4H10

C -0.25772 -1.45229 -1.25677

H 0.09893 -2.46110 -1.25677

H 0.09895 -0.94789 -2.13042

H -1.32772 -1.45227 -1.25677

C 0.25562 -0.72633 0.00063

H -0.10265 -1.22960 0.87428

H 1.32562 -0.72804 0.00161

C -0.25539 0.72641 -0.00077

H -1.32539 0.72812 -0.00213

H 0.10318 1.22979 -0.87423

C 0.25751 1.45221 1.25690

H 1.32750 1.45043 1.25830

H -0.09748 2.46161 1.25588

H -0.10114 0.94888 2.13036

C5H12

C -0.20131 -2.03735 -1.50082

H 0.15534 -3.04616 -1.50082

H 0.15536 -1.53295 -2.37447

H -1.27131 -2.03734 -1.50082

C 0.31203 -1.31139 -0.24341

H -0.04624 -1.81466 0.63024

H 1.38203 -1.31310 -0.24243

C -0.19899 0.14135 -0.24482

H -1.26898 0.14305 -0.24617

H 0.15959 0.64472 -1.11828

C 0.31391 0.86715 1.01285

H 1.38391 0.86537 1.01425
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H -0.04473 0.36382 1.88632

C -0.19700 2.31993 1.01139

H -1.26700 2.32170 1.00998

H 0.15935 2.82421 1.88523

H 0.16165 2.82326 0.13793

Cr(CO)6

Cr -0.44964 -0.05396 0.00000

C -0.44964 1.84604 0.00000

C 1.45036 -0.05396 0.00000

C -0.44964 -0.05396 1.90000

C -0.44964 -0.05396 -1.90000

C -2.34964 -0.05396 0.00000

O 2.56576 -0.05396 0.00000

O -0.44964 2.96144 0.00000

O -0.44964 -0.05396 -3.01540

O -0.44964 -0.05396 3.01540

O -3.46504 -0.05396 0.00000

C -0.44964 -1.95396 0.00000

O -0.44964 -3.06936 0.00000

F– + CH3F

C 0.33338 -0.23574 0.00000

F 1.48429 -1.04955 0.00000

H 0.34198 0.37985 0.87916

H 0.34198 0.37985 -0.87916

H -0.53718 -0.86347 0.00000

F -1.70265 1.20396 0.00000

[FCH3F]–

C -0.00151 -0.00151 -0.00151

F 1.12836 1.12836 1.12836

H -0.44307 -0.44307 0.87143

H -0.44307 0.87143 -0.44307
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H 0.87143 -0.44307 -0.44307

F -1.12662 -1.12662 -1.12662

Cyclobutadiene D2h

C 2.02818 -0.10367 -0.56968

C 3.38504 -0.11014 -0.53143

C 3.38648 1.46992 -0.30910

C 2.02955 1.47649 -0.34724

H 1.25399 -0.85949 -0.69767

H 4.15799 -0.87319 -0.61720

H 4.16066 2.22574 -0.18090

H 1.25658 2.23961 -0.26231

Cyclobutadiene D4h

C 1.94150 0.34778 -0.37424

C 3.41620 1.78907 -0.14334

C 3.40850 0.33689 -0.35264

C 1.94920 1.79996 -0.16495

H 1.16468 -0.41143 -0.49587

H 4.17721 -0.43380 -0.45150

H 4.19302 2.54828 -0.02171

H 1.18049 2.57065 -0.06608

D.5 Performance and Kernel Analysis

The performance behaviors of the 2080-Ti and GV100 can be explained by comparing

the underlying hardware. Specifically, the GV100 has ∼ 40% higher theoretical memory

bandwidth than the 2080-Ti and ∼ 17% more streaming multiprocessors (SM) than the

2080-Ti, however, the 2080-Ti benefited from 27% higher clock speed throughout the timing

tests. The greater performance of the 2080-Ti in mixed precision integral evaluation therefore

suggests that the GPU kernels are compute bound. The performance inversion observed

in full double precision integration is primarily a result of the substantially fewer double

precision execution units in the 2080-Ti compared to the GV100.

To further verify whether that the SlaterGPU kernels are compute bound, the integrals

for C5H12 were computed using a Nvidia A4000 GPU at various locked memory and SM clock
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speeds. Figure D.1 shows the relative performance loss by lowering the memory and SM

clock speeds separately. Full timing details are provided in Table D.1. In mixed and double

precision, lowering the SM clock speed by 14% (1560 MHz to 1335 MHz) and 30% (1560

MHz to 1095 MHz) leads to ERI performance loss of ∼ 12% and ∼ 25%, respectively. On the

other hand, lowering the memory clock by 24% only leads to ∼ 5% and < 1% performance

loss in mixed and double precision, respectively. Thus, the current implementation of the

ERI GPU kernels are indeed compute bound.

Figure D.1: Relative performance of Slater integration is plotted as memory at various
memory and SM clock speeds. Integrals were computed for the C5H12 molecule. The x-axis
labels list the memory clock followed by the SM clock in MHz.

Table D.1: Timings (in seconds) for Slater integration at various memory and SM clock
speeds. Integrals were computed for the C5H12 molecule.

Precision Memory clock (MHz) SM Clock (MHz) S + T Vne (P |Q) (µν|Q) Total
mixed 6500 1560 0.467 16.08 2.358 63.97 82.88
mixed 6500 1335 0.4986 17.38 2.646 72.76 93.28
mixed 6500 1095 0.5507 19.46 3.095 86.06 109.2
mixed 5000 1560 0.5113 17.38 2.446 67.15 87.49
double 6500 1560 0.2852 8.92 6.474 167.5 183.2
double 6500 1335 0.3016 9.541 7.433 190.7 208.0
double 6500 1095 0.326 10.5 8.889 225.3 245.0
double 5000 1560 0.3119 9.542 6.622 167.9 184.3

Hartree-Fock (HF) timings are also provided in Table D.2. Compared to the GPU timings

for the integrals, the HF timings take less than 10% of the overall compute time across all

system sizes considered in mixed and double precision. These timings do not represent an

optimized HF implementation.
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Table D.2: Hartree-Fock timings (in seconds) for various alkanes. Each atom contributes
46,200 grid points. Timings are recorded on a 2080-Ti GPU. Total time in HF does not
include integral computation.

Mixed Precision

Operation/Quantity CH4 C2H6 C3H8 C4H10 C5H12

Main basis size 35 60 85 110 135

Aux basis size 224 370 516 662 808

Time for S and T integrals (s) 4.45E−02 6.40E−02 9.75E−02 1.40E−01 1.95E−01
Time for VNe integrals (s) 2.03E−01 7.37E−01 1.94E+00 4.06E+00 7.32E+00

Time for 3-center integrals (s) 4.22E−01 2.05E+00 5.79E+00 1.25E+01 2.34E+01

Avg time for G Tensor formation (s) 1.51E−03 5.94E−03 1.62E−02 4.30E−02 8.01E−02
Avg time for AO Fock formation (s) 1.30E−05 1.48E−05 1.95E−05 3.95E−05 3.80E−05

Avg time for DIIS (s) 4.69E−04 6.22E−04 9.34E−04 1.10E−03 1.38E−03
Avg time for Fock diagonalization (s) 1.77E−04 2.57E−04 3.78E−04 4.74E−04 6.34E−04

Number of HF iterations 11 12 15 16 17

Total integral time (s) 7.67E-01 3.05E+00 8.20E+00 1.73E+01 3.18E+01

Total time in HF (s) 1.01E−01 2.72E−01 6.61E−01 1.43E+00 2.58E+00

Double Precision

Operation/Quantity CH4 C2H6 C3H8 C4H10 C5H12

Main basis size 35 60 85 110 135

Aux basis size 224 370 516 662 808

Time for S and T integrals (s) 4.98E−02 8.05E−02 1.12E−01 1.63E−01 2.27E−01
Time for VNe integrals (s) 2.35E−01 8.82E−01 2.33E+00 4.86E+00 8.70E+00

Time for 3-center integrals (s) 1.98E+00 9.56E+00 2.69E+01 5.79E+01 1.07E+02

Avg time for G Tensor formation (s) 1.50E−03 5.93E−03 1.57E−02 3.39E−02 7.91E−02
Avg time for AO Fock formation (s) 1.32E−05 1.49E−05 1.95E−05 2.25E−05 3.60E−05

Avg time for DIIS (s) 4.71E−04 6.03E−04 9.03E−04 1.07E−03 1.35E−03
Avg time for Fock diagonalization (s) 1.76E−04 2.54E−04 3.78E−04 4.79E−04 6.35E−04

Number of HF iterations 11 12 15 16 17

Total integral time (s) 2.66E+00 1.15E+01 3.11E+01 6.58E+01 1.20E+02

Total time in HF (s) 9.88E−02 2.70E−01 6.32E−01 1.24E+00 2.67E+00

D.6 Mixed-Precision Error

Additional plots due to mixed-precision errors are provided in Figures D.3 and D.4.

Figures D.5 and D.6 plot the values of the 2-electron integrals as the internuclear distance

between centers is scanned along various coordinate directions. Figures D.3 and D.5 use basis

functions where m = 0, while in Figures D.4 and D.6, m = 0 for the left basis and m = n− 1

for the right basis. In each of these figures, ζ is set to 1 for the left and right basis functions.
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D.7 Lithium Fluoride Parallelity Test

Another test to check the mixed-precision error was performed with the HBCI method

(ε1 = 0.5 mHa, ε2 = 0.5 µHa) on the lithium fluoride molecule. A triple-ζ doubly-polarized

basis, denoted TZ2P, which contains a total of 48 basis functions and 128 auxiliary basis

functions was used with no frozen core orbitals. The LiF bond was stretched from 1.4 Å to

3.0 Å. A plot of the LiF energies and non-parallelity error shown in Figure D.2 demonstrates

a smooth potential energy curve with negligible errors from using mixed-precision integrals

on the order of µHa.

Figure D.2: The LiF molecule is stretched from 1.4 Å to 3.0 Å. Energies (top) were computed
using HBCI(ε1 = 0.5 mHa, ε2 = 0.1 µHa) with the TZ2P basis. An additional point at the
experimental bond distance263 (1.564 Å) was included. Energies are relative to complete
dissociation of the LiH bond. The non-parallelity error (bottom) from using mixed-precision
integrals is also plotted.

D.8 OpenACC Code Examples

Algorithm D.1 Loop for computing the basis χ or potential V on a grid x with npts. The
function f refers to either χ, or V , and fx refers to f evaluated on the grid x.

1 #pragma acc parallel loop present(fx[0: npts],x[0: npts])

2 for (int i = 0; i < npts; i++)

3 fx[i] = f(x[i]);
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Algorithm D.2 Sample code for contracting VP , µ, and ν into the 3-center integrals. Arrays
corresponding to VP , µ, and ν are assumed to have already been computed, and properly
weighted.

1 int N2a = N*N*Naux;

2 #pragma acc parallel loop collapse (3) present (\

3 V_p[0: nbas_atm1 ][0: npts],mu[0: nbas_atm2 ][0: npts],nu[0: nbas_atm3 ][0:

npts],Vmunu [0: N2a])

4 for (int i = atom1_start; i < atom1_end; i++) { // loop over basis

functions on atom 1

5 for (int j = atom2_start; j < atom2_end; j++) { // loop over basis

functions on atom 2

6 for (int k = atom_3_start; k < atom3_end; k++) { // loop over basis

functions on atom 3

7 // shift i,j,k to properly index V_p , mu , nu from 0 to atom 1,2,3

8 int i_shift = i - atom1_start;

9 int j_shift = j - atom2_start;

10 int k_shift = k - atom3_start;

11

12 double sum = 0.;

13 #pragma acc loop reduction (+:sum)

14 for (int l = 0; l < npts; l++) {

15 sum += v_p[i_shift ][l] * mu[j_shift ][l] * nu[k_shift ][l];

16 }

17 Vmunu[i*N*N + j*N + k] = sum;

18 }

19 }

20 }
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Figure D.3: The max and average errors between mixed- and double-precision integral
evaluation are plotted for various basis functions. All basis functions have ζ = 1 and m = 0.
The max and average errors are computed over internuclear distance scans based on the 16
all-positive directions of a Lebedev grid.
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Figure D.4: The max and average errors between mixed- and double-precision integral
evaluation are plotted for various basis functions. All basis functions have ζ = 1. The left
basis has m = 0 and the right basis has m = n−1. The max and average errors are computed
over internuclear distance scans based on the 16 all-positive directions of a Lebedev grid.
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Figure D.5: The mixed-precision 2-center ERIs are plotted for various basis functions. All
basis functions have ζ = 1 and m = 0. The ERIs are computed over internuclear distance
scans based on the 16 all-positive directions of a Lebedev grid.
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Figure D.6: The mixed-precision 2-center ERIs are plotted for various basis functions. All
basis functions have ζ = 1. The left basis has m = 0 and the right basis has m = n− 1. The
ERIs are computed over internuclear distance scans based on the 16 all-positive directions of
a Lebedev grid.
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[63] U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77:259–315,
Apr 2005.

[64] D. Zgid and M. Nooijen. On the spin and symmetry adaptation of the density matrix
renormalization group method. The Journal of Chemical Physics, 128(1):014107, 2008.

[65] U. Schollwock. The density-matrix renormalization group in the age of matrix product
states. Annals of Physics, 326(1):96–192, 2011. ISSN 0003-4916.

[66] G. K.-L. Chan and S. Sharma. The Density Matrix Renormalization Group in Quantum
Chemistry. Annual Review of Physical Chemistry, 62(1):465–481, 2011.

[67] M. R. Hermes and L. Gagliardi. Multiconfigurational Self-Consistent Field Theory with
Density Matrix Embedding: The Localized Active Space Self-Consistent Field Method.
Journal of Chemical Theory and Computation, 15(2):972–986, 2019.

[68] M. R. Hermes, R. Pandharkar, and L. Gagliardi. Variational Localized Active Space
Self-Consistent Field Method. Journal of Chemical Theory and Computation, 16(8):
4923–4937, 2020.

[69] P. M. Zimmerman and A. E. Rask. Evaluation of full valence correlation energies and
gradients. The Journal of Chemical Physics, 150(24):244117, 2019.

[70] D.-K. Dang and P. M. Zimmerman. Fully variational incremental CASSCF. The
Journal of Chemical Physics, 154(1):014105, 2021.

[71] A. B. Mukhopadhyay, M. Dolg, and C. Oligschleger. Ab initio many-body investigation
of structure and stability of two-fold rings in silicates. The Journal of Chemical Physics,
120(18):8734–8739, 2004.

[72] J. Friedrich, M. Hanrath, and M. Dolg. Fully automated implementation of the
incremental scheme: Application to CCSD energies for hydrocarbons and transition
metal compounds. The Journal of Chemical Physics, 126(15):154110, 2007.

[73] H. Stoll. The correlation energy of crystalline silicon. Chemical Physics Letters, 191(6):
548–552, 1992. ISSN 0009-2614.

124



[74] H. Stoll. Correlation energy of diamond. Phys. Rev. B, 46:6700–6704, Sep 1992.

[75] H. Stoll. On the correlation energy of graphite. The Journal of Chemical Physics, 97
(11):8449–8454, 1992.

[76] J. J. Eriksen, F. Lipparini, and J. Gauss. Virtual Orbital Many-Body Expansions:
A Possible Route towards the Full Configuration Interaction Limit. The Journal of
Physical Chemistry Letters, 8(18):4633–4639, 2017.

[77] J. J. Eriksen and J. Gauss. Many-Body Expanded Full Configuration Interaction. I.
Weakly Correlated Regime. Journal of Chemical Theory and Computation, 14(10):
5180–5191, 2018.

[78] J. J. Eriksen and J. Gauss. Many-Body Expanded Full Configuration Interaction. II.
Strongly Correlated Regime. Journal of Chemical Theory and Computation, 0(0):null,
2019.

[79] P. M. Zimmerman. Incremental full configuration interaction. The Journal of Chemical
Physics, 146(10):104102, 2017.

[80] P. M. Zimmerman. Strong correlation in incremental full configuration interaction. The
Journal of Chemical Physics, 146(22):224104, 2017.

[81] P. M. Zimmerman. Singlet-Triplet Gaps through Incremental Full Configuration
Interaction. The Journal of Physical Chemistry A, 121(24):4712–4720, 2017.

[82] J. S. Boschen, D. Theis, K. Ruedenberg, and T. L. Windus. Correlation Energy
Extrapolation by Many-Body Expansion. The Journal of Physical Chemistry A, 121
(4):836–844, 2017.

[83] J. J. Eriksen, T. A. Anderson, J. E. Deustua, K. Ghanem, D. Hait, M. R. Hoffmann,
S. Lee, D. S. Levine, I. Magoulas, J. Shen, N. M. Tubman, K. B. Whaley, E. Xu, Y. Yao,
N. Zhang, A. Alavi, G. K.-L. Chan, M. Head-Gordon, W. Liu, P. Piecuch, S. Sharma,
S. L. Ten-no, C. J. Umrigar, and J. Gauss. The Ground State Electronic Energy of
Benzene. The Journal of Physical Chemistry Letters, 11(20):8922–8929, 2020.

[84] M. Gomberg. Triphenylmethyl, ein Fall von dreiwerthigem Kohlenstoff. Berichte der
deutschen chemischen Gesellschaft, 33(3):3150–3163, 1900.
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ization reaction of cyclobutadiene and its barrier height: An ab initio benchmark
multireference average-quadratic coupled cluster study. The Journal of Chemical
Physics, 125(6):064310, 2006.

[155] O. Demel and J. Pittner. Multireference Brillouin-Wigner coupled clusters method
with noniterative perturbative connected triples. The Journal of Chemical Physics, 124
(14):144112, 2006.

[156] O. Demel, K. R. Shamasundar, L. Kong, and M. Nooijen. Application of Double
Ionization State-Specific Equation of Motion Coupled Cluster Method to Organic
Diradicals. The Journal of Physical Chemistry A, 112(46):11895–11902, 2008.

[157] P. B. Karadakov. Ground- and Excited-State Aromaticity and Antiaromaticity in
Benzene and Cyclobutadiene. The Journal of Physical Chemistry A, 112(31):7303–7309,
2008.

[158] T. Saito, S. Nishihara, Y. Kitagawa, T. Kawakami, S. Yamanaka, M. Okumura, and
K. Yamaguchi. A broken-symmetry study on the automerization of cyclobutadiene.
Comparison with UNO- and DNO-MRCC methods. Chemical Physics Letters, 498(4):
253–258, 2010. ISSN 0009-2614.

[159] D. I. Lyakh, V. F. Lotrich, and R. J. Bartlett. The ‘tailored’ CCSD(T) description of
the automerization of cyclobutadiene. Chemical Physics Letters, 501(4):166–171, 2011.
ISSN 0009-2614.

131



[160] F. Fantuzzi, T. M. Cardozo, and M. A. C. Nascimento. The Nature of the Singlet and
Triplet States of Cyclobutadiene as Revealed by Quantum Interference. ChemPhysChem,
17(2):288–295, 2016.

[161] P. C. Varras and P. S. Gritzapis. The transition state of the automerization reaction of
cyclobutadiene: A theoretical approach using the Restricted Active Space Self Consistent
Field method. Chemical Physics Letters, 711:166–172, 2018. ISSN 0009-2614.

[162] J. E. T. Smith, B. Mussard, A. A. Holmes, and S. Sharma. Cheap and Near Exact
CASSCF with Large Active Spaces. Journal of Chemical Theory and Computation, 13
(11):5468–5478, 2017.

[163] D. A. Mazziotti. Two-electron reduced density matrices from the anti-Hermitian
contracted Schrödinger equation: Enhanced energies and properties with larger basis
sets. The Journal of Chemical Physics, 126(18):184101, 2007.

[164] A. E. DePrince, E. Kamarchik, and D. A. Mazziotti. Parametric two-electron reduced-
density-matrix method applied to computing molecular energies and properties at
nonequilibrium geometries. The Journal of Chemical Physics, 128(23):234103, 2008.

[165] D. A. Mazziotti. Parametrization of the two-electron reduced density matrix for its direct
calculation without the many-electron wave function: Generalizations and applications.
Phys. Rev. A, 81:062515, Jun 2010.

[166] J. W. Mullinax, E. Epifanovsky, G. Gidofalvi, and A. E. DePrince. Analytic Energy
Gradients for Variational Two-Electron Reduced-Density Matrix Methods within the
Density Fitting Approximation. Journal of Chemical Theory and Computation, 15(1):
276–289, 2019.

[167] R. M. Richard, K. U. Lao, and J. M. Herbert. Understanding the many-body expansion
for large systems. I. Precision considerations. The Journal of Chemical Physics, 141(1):
014108, 2014.

[168] K. U. Lao, K.-Y. Liu, R. M. Richard, and J. M. Herbert. Understanding the many-body
expansion for large systems. II. Accuracy considerations. The Journal of Chemical
Physics, 144(16):164105, 2016.

[169] K.-Y. Liu and J. M. Herbert. Understanding the many-body expansion for large systems.
III. Critical role of four-body terms, counterpoise corrections, and cutoffs. The Journal
of Chemical Physics, 147(16):161729, 2017.

[170] J. M. Herbert. Fantasy versus reality in fragment-based quantum chemistry. The
Journal of Chemical Physics, 151(17):170901, 2019.

[171] K.-Y. Liu and J. M. Herbert. Energy-Screened Many-Body Expansion: A Practical
Yet Accurate Fragmentation Method for Quantum Chemistry. Journal of Chemical
Theory and Computation, 16(1):475–487, 2020.

132



[172] K. Kitaura, S.-I. Sugiki, T. Nakano, Y. Komeiji, and M. Uebayasi. Fragment molecular
orbital method: analytical energy gradients. Chemical Physics Letters, 336(1):163–170,
2001. ISSN 0009-2614.

[173] D. G. Fedorov, T. Ishida, M. Uebayasi, and K. Kitaura. The Fragment Molecular
Orbital Method for Geometry Optimizations of Polypeptides and Proteins. The Journal
of Physical Chemistry A, 111(14):2722–2732, 2007.

[174] T. Nagata, D. G. Fedorov, and K. Kitaura. Derivatives of the approximated electrostatic
potentials in the fragment molecular orbital method. Chemical Physics Letters, 475(1):
124–131, 2009. ISSN 0009-2614.

[175] T. Nagata, D. G. Fedorov, and K. Kitaura. Importance of the hybrid orbital operator
derivative term for the energy gradient in the fragment molecular orbital method.
Chemical Physics Letters, 492(4):302–308, 2010. ISSN 0009-2614.

[176] T. Nagata, K. Brorsen, D. G. Fedorov, K. Kitaura, and M. S. Gordon. Fully analytic
energy gradient in the fragment molecular orbital method. The Journal of Chemical
Physics, 134(12):124115, 2011.

[177] P. Pulay. Analytical derivatives, forces, force constants, molecular geometries, and
related response properties in electronic structure theory. WIREs Computational
Molecular Science, 4(3):169–181, 2014.

[178] S. Keller, K. Boguslawski, T. Janowski, M. Reiher, and P. Pulay. Selection of active
spaces for multiconfigurational wavefunctions. The Journal of Chemical Physics, 142
(24):244104, 2015.

[179] V. Guner, K. S. Khuong, A. G. Leach, P. S. Lee, M. D. Bartberger, and K. N. Houk.
A Standard Set of Pericyclic Reactions of Hydrocarbons for the Benchmarking of
Computational Methods: The Performance of ab Initio, Density Functional, CASSCF,
CASPT2, and CBS-QB3 Methods for the Prediction of Activation Barriers, Reaction
Energetics, and Transition State Geometries. The Journal of Physical Chemistry A,
107(51):11445–11459, 2003.

[180] F. Fracchia, R. Cimiraglia, and C. Angeli. Assessment of Multireference Perturbation
Methods for Chemical Reaction Barrier Heights. The Journal of Physical Chemistry A,
119(21):5490–5495, 2015.

[181] C. W. Bauschlicher and S. R. Langhoff. Full configuration-interaction study of the
ionic–neutral curve crossing in LiF. The Journal of Chemical Physics, 89(7):4246–4254,
1988.

[182] A. Sanchez de Meras, M.-B. Lepetit, and J.-P. Malrieu. Discontinuity of valence
CASSCF wave functions around weakly avoided crossing between valence configurations.
Chemical Physics Letters, 172(2):163–168, 1990. ISSN 0009-2614.

133



[183] W. J. Glover. Communication: Smoothing out excited-state dynamics: Analytical
gradients for dynamically weighted complete active space self-consistent field. The
Journal of Chemical Physics, 141(17):171102, 2014.

[184] J. Cullen. Generalized valence bond solutions from a constrained coupled cluster
method. Chemical Physics, 202(2):217–229, 1996. ISSN 0301-0104.

[185] J. Gerratt, D. L. Cooper, P. B. Karadakov, and M. Raimondi. Modern valence bond
theory. Chem. Soc. Rev., 26:87–100, 1997.

[186] T. Van Voorhis and M. Head-Gordon. Connections between coupled cluster and
generalized valence bond theories. The Journal of Chemical Physics, 115(17):7814–7821,
2001.

[187] G. J. O. Beran, B. Austin, A. Sodt, and M. Head-Gordon. Unrestricted Perfect Pairing:
The Simplest Wave-Function-Based Model Chemistry beyond Mean Field. The Journal
of Physical Chemistry A, 109(40):9183–9192, 2005.

[188] K. V. Lawler, D. W. Small, and M. Head-Gordon. Orbitals That Are Unrestricted in
Active Pairs for Generalized Valence Bond Coupled Cluster Methods. The Journal of
Physical Chemistry A, 114(8):2930–2938, 2010.

[189] A. I. Krylov, C. D. Sherrill, E. F. C. Byrd, and M. Head-Gordon. Size-consistent wave
functions for nondynamical correlation energy: The valence active space optimized
orbital coupled-cluster doubles model. The Journal of Chemical Physics, 109(24):
10669–10678, 1998.
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